2021-2022学年度强化训练2022年沪科版九年级数学下册期末测评-卷(Ⅲ)(精选).docx
-
资源ID:28172632
资源大小:817.48KB
全文页数:38页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度强化训练2022年沪科版九年级数学下册期末测评-卷(Ⅲ)(精选).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年沪科版九年级数学下册期末测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,将绕点C逆时针旋转90°得到,则的度数为( )A105°B120°C135°D150°2、下列说法正确的是( )A掷一枚质地均匀的骰子,掷得的点数为3的概率是B若AC、BD为菱形ABCD的对角线,则的概率为1C概率很小的事件不可能发生D通过少量重复试验,可以用频率估计概率3、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作O,O与AB,AE分别相切于点G,H,连接FG,GH则下列结论错误的是( )AB四边形EFGH是菱形CD4、下列事件中,是必然事件的是()A实心铁球投入水中会沉入水底B车辆随机到达一个路口,遇到红灯C打开电视,正在播放大国工匠D抛掷一枚硬币,正面向上5、下列关于随机事件的概率描述正确的是( )A抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C随机事件发生的概率大于或等于0,小于或等于1D在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率6、如图,几何体的左视图是( )· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·ABCD7、如图,AB是的直径,弦CD交AB于点P,则CD的长为( )ABCD88、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D9、下列说法错误的是( )A必然事件发生的概率是1B不可能事件发生的概率为0C随机事件发生的可能性越大,它的概率就越接近1D概率很小的事件不可能发生10、如图,ABCD是正方形,CDE绕点C逆时针方向旋转90°后能与CBF重合,那么CEF是()A.等腰三角形B等边三角形C.直角三角形D.等腰直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为_2、如图,在中,是内的一个动点,满足若,则长的最小值为_· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·3、已知中,以为圆心,长度为半径画圆,则直线与的位置关系是_4、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_5、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是_三、解答题(5小题,每小题10分,共计50分)1、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF(1)在三角板旋转过程中,当MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当MPN的一边恰好经过BC边的中点时,试求线段EF的长2、如图,AB是O的直径,点D,E在O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C(1)求证:CD是O的切线(2)若,求阴影部分的面积3、已知线段AB,用平移、旋转、轴对称画出一个以AB为一边,一个内角是30°的菱形(不写画法,保留作图痕迹)4、在ABC与DEF中,BACEDF90°,且ABAC,DEDF(1)如图1,若点D与A重合,AC与EF交于P,且CAE30°,CE,求EP的长;(2)如图2,若点D与C重合,EF与BC交于点M,且BMCM,连接AE,且CAEMCE,求证:AE+MFCE;(3)如图3,若点D与A重合,连接BE,且ABEABC,连接BF,CE,当BF+CE最小时,直接出的值· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·5、如图1,在平面直角坐标系中,二次函数的图象经过点,过点A作轴,做直线AC平行x轴,点D是二次函数的图象与x轴的一个公共点(点D与点O不重合)(1)求点D的横坐标(用含b的代数式表示)(2)求的最大值及取得最大值时的二次函数表达式(3)在(2)的条件下,如图2,P为OC的中点,在直线AC上取一点M,连接PM,做点C关于PM的对称点N,连接AN,求AN的最小值当点N落在抛物线的对称轴上,求直线MN的函数表达式-参考答案-一、单选题1、B【分析】由题意易得,然后根据三角形外角的性质可求解【详解】解:由旋转的性质可得:,;故选B【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键2、B【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可【详解】A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 ACBD 的概率为1是正确的,故B正确,符合题意;C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键3、C【分析】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·由折叠可得DAE=FAE,D=AFE=90°,EF=ED,再根据切线长定理得到AG=AH,GAF=HAF,进而求出GAF=HAF=DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,C=90°,FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,GAF=HAF,得出GHAO,不难判断D【详解】解:由折叠可得DAE=FAE,D=AFE=90°,EF=ED.AB和AE都是O的切线,点G、H分别是切点,AG=AH,GAF=HAF,GAF=HAF=DAE=30°,BAE=2DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:OFEF,OF是O的半径,EF是O的切线,HE=EF,NF=NG,ANE是等边三角形,FG/HE,FG=HE,AEF=60°,四边形EFGH是平行四边形,FEC=60°,又HE=EF,四边形EFGH是菱形,故B正确,不符合题意;AG=AH,GAF=HAF,GHAO,故D正确,不符合题意;在RtEFC中,C=90°,FEC=60°,EFC=30°,EF=2CE,DE=2CE.在RtADE中,AED=60°,AD=DE,AD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键4、A【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可【详解】解:A、实心铁球投入水中会沉入水底,是必然事件,该选项符合题意;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·B、车辆随机到达一个路口,遇到红灯,是随机事件,该选项不合题意;C、打开电视,正在播放大国工匠,是随机事件,该选项不合题意;D、抛掷一枚硬币,正面向上,是随机事件,该选项不合题意;故选:A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6、D【分析】根据从左边看得到的图形是左视图,可得答案【详解】根据左视图的定义可知,这个几何体的左视图是选项D,故选:D【点睛】本题考查简单组合体的三视图,解题的关键是理解三视图的定义7、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长【详解】解:如图,过点作于点,连接, AB是的直径,在中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键8、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30°求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60°,MBH+HBN=60°,又MBH+MBC=ABC=60°,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=×60°=30°,CG=AB=×5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点9、D【分析】根据概率的意义分别判断后即可确定正确的选项【详解】解:A. 必然事件发生的概率是1,故该选项正确,不符合题意;B. 不可能事件发生的概率是0,故该选项正确,不符合题意;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·C. 随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;D. 概率很小的事件也可能发生,故该选项不正确,符合题意;故选D【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为010、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出ECF90°,即可得到CEF为等腰直角三角形【详解】解:CDE绕点C逆时针方向旋转90°后能与CBF重合,ECF90°,CECF,CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键二、填空题1、0.9【分析】根据题意可得长方形的面积,然后依据骰子落在会徽图案上的频率稳定在0.15左右,总面积乘以频率即为会徽图案的面积【详解】解:由题意可得:长方形的面积为,骰子落在会徽图案上的频率稳定在0.15左右,会徽图案的面积为:,故答案为:【点睛】题目主要考查根据频率计算满足条件的情况,理解题意,熟练掌握频率的计算方法是解题关键2、2【分析】取AC中点O,由勾股定理的逆定理可知ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可【详解】解:如图所示,取AC中点O,即,ADC=90°,点D在以O为圆心,以AC为直径的圆上,作ADC外接圆,连接BO,交圆O于,则长的最小值即为,ACB=90°,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,故答案为:2【点睛】本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹3、相切【分析】过点C作CDAB于D,在RtABC中,根据勾股定理AB=cm,利用面积得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根据CD=r=4.8cm,得出直线与的位置关系是相切【详解】解:过点C作CDAB于D,在RtABC中,根据勾股定理AB=cm,SABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,CD=r=4.8cm,直线与的位置关系是相切故答案为:相切【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键4、【分析】先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可【详解】解:记红球为,白球为,列表得:· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·一共有12种情况,摸到两个都是红球有2种,P(两个球都是红球),故答案是【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件5、【分析】画树状图,共有12个等可能的结果,摸到的两个球颜色红色的结果有2个,再由概率公式求解即可【详解】解:画树状图如图:共有12个等可能的结果,摸到的两个红球的有2种结果,摸到的两个红球的概率是,故答案为:【点睛】本题考查列表法或画树状图求概率,解题的关键是准确画出树状图或列出表格三、解答题1、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或【分析】(1)延长FD至G,使DG=BE,连接AG,先证ABEADG,再证GAFEAF即可;(2)在DC上截取DH=BE,连接AH,先证ADHABE,再证HAFEAF即可;(3)分两种情形分别求解即可解决问题【详解】解:(1)结论:EF=BE+DF理由:延长FD至G,使DG=BE,连接AG,如图,ABCD是正方形,AB=AD,ABE=ADG=DAB=90°,ABEADG(AAS),AE=AG,DAG=EAB,EAF=45°,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·DAF+EAB=45°,DAF+DAG=45°,GAF=EAF=45°,AF=AF,GAFEAF(AAS),EF=GF,GF=DF+DG=DF+BE,即:EF=DF+BE;(2)结论:EF=DF-BE理由:在DC上截取DH=BE,连接AH,如图,AD=AB,ADH=ABE=90°,ADHABE(SAS),AH=AE,DAH=EAB,EAF=EAB+BAF=45°,DAH+BAF=45°,HAF=45°=EAF,AF=AF,HAFEAF(SAS),HF=EF,DF=DH+HF,EF=DF-BE;(3)当MA经过BC的中点E时,同(1)作辅助线,如图:设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x在RtEFC中,(x+2)2=(4-x)2+22,x=,EF=x+2=当NA经过BC的中点G时,同(2)作辅助线,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·设BE=x,由(2)的结论得EC=4+x,EF=FH,K为BC边的中点,CK=BC=2,同理可证ABKFCK(SAS),CF=AB=4,EF=FH=CF+CD-DH=8-x,在RtEFC中,由勾股定理得到:(4+x)2+42=(8-x)2,x=,EF=8-=综上,线段EF的长为或【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题2、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有ODB是等边三角形,然后可得AEO也为等边三角形,进而可得ODAC,最后问题可求证;(2)由(1)易得AE=ED,CED=OBD=60°,然后可得圆O的半径,进而可得扇形OED和OED的面积,则有弓形ED的面积,最后问题可求解【详解】(1)证明:连接OD,如图所示:四边形BDEO是平行四边形,ODB是等边三角形,OBD=BOD=60°,AOE=OBD=60°,OE=OA,AEO也为等边三角形,EAO=DOB=60°,AEOD,ODC+C=180°,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·CDAE,C=90°,ODC=90°,OD是圆O的半径,CD是O的切线(2)解:由(1)得EAO=AOE=OBD=BOD=60°,EDAB,EAO=CED=60°,AOE+EOD+BOD=180°,EOD=60°,DEO为等边三角形, ED=OE=AE,CDAE,CED=60°,CDE=30°,设OED的高为h,【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键3、见解析【分析】把线段AB绕点A逆时针旋转30°得到线段AD,作直线BD,以直线BD为对称轴,分别作AB、AD的轴对称图形,即可得到所求的菱形ABCD.【详解】解:如图所示:菱形ABCD即为所求.【点睛】本题主要考查了菱形的性质、旋转的性质、轴对称的性质等知识点,理解菱形的性质是解答本题的关键.4、(1);(2)证明见详解;(3)【分析】(1)过点P作PGEC于G,根据等腰直角三角形得出B=C=45°,根据PGEC,可取GPC=90°-C=45°,可得PG=GC,根据三角形外角性质EPC=75°,可求EPG=30°,根据30°直角三角形性质得出EP=2EG,根据勾股定理根据EC=EG+GC=EG+,可求EG=即可;(2)连结AE,在CE上截取EJ=AE,连结AJ,根据MAH=45°=HEC,可得点A、M、C、E四点共· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·圆,得出AEM=ACM=45°=HEC,AME=ACE,可得AEJ为等腰直角三角形,根据根据勾股定理AJ=,得出CAE=MCE,可证JAC=JCA,可得AJ=JC=,先证CHMECM,再证AEMHEC(AAS),得出EM=EC,再证AMEMCF(AAS),得出AE=MF即可;(3)分两种情况,当BE在ABC的平分线上时,与BE在ABC外部时,当BE在ABC的平分线上时,作ABC的平分线交AC于O,将AEC逆时针旋转90°得到AFC,过点O作OPBC于P,则点E在BO上,有ABE=ABC,先证B、A、C三点共线,根据两点之交线段最短可得BF+CE=BF+CFBC,当点F在BC上时,BF+CE最短=BC,此时点E在AC上与点O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF +AF=(2+)AF 在RtABE中,根据勾股定理,当BE在ABC外部时,EBA=,将EAC逆时针旋转90°得到FAC,先证B、A、C三点共线,根据两点之间线段最短可得BF+CE=BF+FCBC,当点F在BC上时,BF+CE最短= BC,再证EF=BF,然后根据勾股定理BF=CE=AE+AC=AF+AB=在RtEAB中,根据勾股定理即可【详解】解:(1)过点P作PGEC于G,BAC=90°,AB=AC,B=C=45°,PGEC,GPC=90°-C=45°,PG=GC,EAC=30°,EDF=90°,DE=DF,DEF=F=45°,EPC=AEF+EAC=30°+45°=75°,EPG=EPC-GPC=75°-45°=30°,EP=2EG,在RtEPG中,根据勾股定理GC=PG=EC=EG+GC=EG+,EG=,EP=2EG=;(2)连结AE,在CE上截取EJ=AE,连结AJ,BM=CM,AB=AC,BAC=90°,AMBC,AM=BM=CM,MAH=45°=HEC,点A、M、C、E四点共圆,AEM=ACM=45°=HEC,AME=ACE,AEJ=AEM+HEC=45°+45°=90°,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·AE=JE,EAJ=EJA=45°,在RtAEJ中,根据勾股定理AJ=,CAE=MCE,JAC+45°=JCA+45°,JAC=JCA,AJ=JC=,HCM=CEM=45°,HMC=CME,CHMECM,MHC=MCE,EHA=MHC=MCE=EAHAE=HE,在AEM和HEC中,AEMHEC(AAS),EM=EC,EMC=ECM,AME+EMC=ECM+MCF=90°,AME=MCF,在AME和MCF中,AMEMCF(AAS),AE=MF,