欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年度北师大版九年级数学下册第三章-圆难点解析试题(含详细解析).docx

    • 资源ID:28173298       资源大小:764.96KB        全文页数:30页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年度北师大版九年级数学下册第三章-圆难点解析试题(含详细解析).docx

    北师大版九年级数学下册第三章 圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A等弧所对的圆周角相等B平分弦的直径垂直于弦C相等的圆心角所对的弧相等D过弦的中点的直线必过圆心2、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,3)则经画图操作可知:ABC的外接圆的圆心坐标是( )A(2,1)B(1,0)C(1,1)D(0,1)3、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,则阴影部分的面积为( )ABCD4、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19°B38°C52°D76°5、如图,AB为的直径,C、D为上两点,则AB的长度为( )A6B3C9D126、如图,AB是O的直径,BD与O相切于点B,点C是O上一点,连接AC并延长,交BD于点D,连接OC,BC,若BOC50°,则D的度数为()A50°B55°C65°D75°7、如图,四边形ABCD内接于O,连接BD,若,BDC50°,则ADC的度数是()A125°B130°C135°D140°8、如图,正方形ABCD内接于O,点P在上,则下列角中可确定大小的是()APCBBPBCCBPCDPBA9、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70°,则P的度数为( ) A70°B50°C20°D40°10、下列图形中,ABC与DEF不一定相似的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BGAE于点G,连接CG并延长交AD于点F,则AF的最大值是_2、如图,在RtABC中,C90°,AC2,BC2以点A为圆心,AC长为半径作弧交AB于点D,再以点B为圆心,BD长为半径作弧交BC于点E,则图中阴影部分的面积为_3、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、若,则图中阴影部分的面积为_(结果保留)4、若一个扇形的半径是18cm,且它的弧长是,则此扇形的圆心角等于_5、如图,点D为边长是的等边ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120°不变,则四边形ADBC的面积S的最大值是 _三、解答题(5小题,每小题10分,共计50分)1、如图,内接于O,且为O的直径,交于点,在的延长线上取点,使得DCEB(1)求证:是O的切线;(2)若,求AE的长2、如图,AB是O的直径,点C是圆上一点,弦CDAB于点E,且DCAD,过点A作O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线与AB的延长线交于点G(1)求证:FG是O的切线;(2)求证:四边形AFCD是菱形3、已知矩形,将矩形绕点A顺时针旋转,得到矩形(1)当点E在上时,求证:;(2)当时,求a值;(3)将矩形绕点A顺时针旋转的过程中,求绕过的面积4、如图,内接于,弦AE与弦BC交于点D,连接BO,(1)求证:;(2)若,求的度数;(3)在(2)的条件下,过点O作于点H,延长HO交AB于点P,若,求半径的长5、如图,A是上一点,过点A作的切线(1)连接OA并延长,使AB=OA;作线段OB的垂直平分线;使用直尺和圆规,在图中作OB的垂直平分线l(保留作图痕迹)(2)直线l即为所求作的切线,完成如下证明证明:在中,直线l垂直平分OB直线l经过半径OA的外端,且_,直线l是的切线(_)(填推理的依据)-参考答案-一、单选题1、A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可【详解】解:A. 同弧或等弧所对的圆周角相等,所以A选项正确;B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C选项错误;D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.故选A.【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点灵活运用相关知识成为解答本题的关键2、A【分析】首先由ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为ABC的外心【详解】解:ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O即为所求的ABC的外心,ABC的外心坐标是(2,1)故选:A【点睛】此题考查了三角形外心的知识注意三角形的外心即是三角形三边垂直平分线的交点解此题的关键是数形结合思想的应用3、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案【详解】解:根据题意,如图:AB是的直径,OD是半径,AE=CE,阴影CED的面积等于AED的面积,;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算4、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.5、A【分析】连接AC,利用直角三角形30°的性质求解即可【详解】解:如图,连接AC AB是直径, ACB=90°, CAB=CDB=30°, AB=2BC=6, 故选:A【点睛】本题考查圆周角定理,含30°角的直角三角形的性质,解题的关键是学会添加常用辅助线,构造直角三角形解决问题6、C【分析】首先证明ABD90°,由BOC50°,根据圆周角定理求出A的度数即可解决问题【详解】解:BD是切线,BDAB,ABD90°,BOC50°,ABOC25°,D90°A65°,故选:C【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型7、B【分析】如图所示,连接AC,由圆周角定理BAC=BDC=50°,再由等弧所对的圆周角相等得到ABC=BAC=50°,再根据圆内接四边形对角互补求解即可【详解】解:如图所示,连接AC,BAC=BDC=50°,ABC=BAC=50°,四边形ABCD是圆内接四边形,ADC=180°-ABC=130°,故选B【点睛】本题主要考查了圆周角定理,等弧所对的圆周角相等,圆内接四边形对角互补,熟练掌握相关知识是解题的关键8、C【分析】由题意根据正方形的性质得到BC弧所对的圆心角为90°,则BOC=90°,然后根据圆周角定理进行分析求解【详解】解:连接OB、OC,如图,正方形ABCD内接于O,所对的圆心角为90°,BOC=90°,BPC=BOC=45°故选:C【点睛】本题考查圆周角定理和正方形的性质,确定BC弧所对的圆心角为90°是解题的关键9、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90°,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90°,ACB=70°,AOB=2P=140°,P=360°-OAP-OBP-AOB=40°故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用10、A【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90°,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90°,所以根据ACB=CDB=90°,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理二、填空题1、1【分析】以AB为直径作圆,当CF与圆相切时,AF最大根据切线长定理转化线段AFBCCF,在RtDFC利用勾股定理求解【详解】解:以AB为直径作圆,因为AGB90°,所以G点在圆上当CF与圆相切时,AF最大此时FAFG,BCCG设AFx,则DF4x,FC4x,在RtDFC中,利用勾股定理可得:42(4x)2(4x)2,解得x1故答案为:1【点睛】本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键2、【分析】根据特殊角的三角函数值,求出B和A的度数,再根据三角形的面积公式和扇形的面积公式分别求出ACB和扇形ACD、扇形BDE的面积,最后求出答案即可【详解】解:ACB90°,AC2,BC2,由勾股定理得:AB=4,B30°,A60°,由题意,AC=AD=2,则BD=AB-AD=2,阴影部分的面积SSABCS扇形ACDS扇形BDE,故答案为:【点睛】本题考查根据特殊角的三角函数值求角度,以及扇形面积相关计算问题,掌握特殊角的三角函数值,以及扇形的面积计算公式是解题关键3、#【分析】由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和【详解】解:四边形是矩形,图中阴影部分的面积为:故答案为:【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答4、60°度【分析】根据变形为n=计算即可【详解】扇形的半径是18cm,且它的弧长是,且n=60°,故答案为:60°【点睛】本题考查了弧长公式,灵活进行弧长公式的变形计算是解题的关键5、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持ADB120°不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,在中,解得:,过点作的垂线交于,故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质三、解答题1、(1)证明见详解;(2)【分析】(1)连接OC,由等腰三角形的性质得出DCE=DEC,A=ACO,可得出DCE+ACO=90°,则可得出结论(2)过点D作DFCE于点F,由勾股定理求出AB=5,证明AOEACB,得出比例线段,即可求出AE【详解】(1)证明:连接OC,如图1,DC=DE,DCE=DEC,DEC=AEO,DCE=AEO,OAOE,A+AEO=90°,DCE+A=90°,OA=OC,A=ACO,DCE+ACO=90°,OCDC,CD是O的切线;(2)如图2,过点D作DFCE于点F,AB为O的直径,ACB=90°,ACB=AOE,AC=2,AB=,又A=A,AOEACB,【点睛】本题考查了等腰三角形的性质和判定,相似三角形的判定与性质,三角形内角和定理,切线的判定,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键2、(1)见解析;(2)见解析【分析】(1)连接OC、AC,证明ACD为等边三角形,得出ADC=DCA=DAC=60°,OCD=30°,由FGDA,得出DCF=180°-ADC=120°,则OCF=DCF-OCD=90°,即FGOC,即可得出结论;(2)证明AFDC,由FGDA,得出四边形AFCD是菱形【详解】(1)证明:连接OC、AC,如图所示:AB是O的直径,弦CDAB,CE=DE,AD=AC,DC=AD,DC=AD=AC,ACD为等边三角形,ADC=DCA=DAC=60°,DAB=BAC=30°,BOC=2BAC=60°,OCD=90°-60°=30°,FGDA,D=DCG=60°,OCG=DCG+OCD=60°+30°=90°,FGOC,OC为O的半径,FG是O的切线;(2)证明:AF与O相切,AFAG,DCAG,AFDC,FGDA,四边形AFCD为平行四边形DCAD,四边形AFCD是菱形【点睛】本题考查了切线的判定与性质,菱形的判定与性质,等边三角形的性质,证明FG是O的切线是解题的关键3、(1)见解析;(2)旋转角为 60°或者 300°;(3)9【分析】(1)由旋转的性质及等腰三角形性质得AEBABE,由AEFBAD可得EAFABD,从而有AEBEAF,故由平行线的判定即可得到结论;(2)分点G在AD的右侧和AD的左侧两种情况;均可证明GAD是等边三角形,从而问题解决;(3)由S阴影S扇形ACFS扇形ADG,分别计算出两个扇形的面积即可求得阴影部分面积【详解】(1)连接AF,由旋转可得,AEAB,EF=BC,AEF=ABC=90AEBABE,又四边形ABCD是矩形ABC=BAD=90,BC=ADEF=AD,AEF=BAD=90在AEF和BAD中 AEFBAD(SAS),EAFABD,AEBEAF,AFBD (2)如图,当GBGC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GCGB,GHBC,四边形ABHM是矩形,AMBHADAG,GM垂直平分AD,GDGADA,ADG是等边三角形,DAG60°,旋转角60°; 当点G在AD左侧时,同理可得ADG是等边三角形,DAG60°,旋转角360°60°300° 旋转角为 60°或者 300°(3)如图3,S扇形ACF25,S扇形ADG16,S阴影S扇形ACFS扇形ADG25169即阴影部分的面积为【点睛】本题考查了矩形的性质,旋转的性质,等边三角形的判定与性质,扇形面积,线段垂直平分线的判定等知识,涉及的知识点较多,灵活运用这些知识是解题的关键,(2)小问注意分类讨论4、(1)见解析;(2)30°;(3)【分析】(1)如图所示,连接OA,则,由OA=OB,得到OAB=OBA,即可推出,即OBA+ACB=90°,再由OBA=CAE,则ACB+CAE=90°,由此即可证明;(2)如图所示,连接CE,则ABC=AEC,由,可得AEC=30°,则ABC=30°;(3)如图所示,过点O作OFAB于F,则BF=AF,设FP=x,可得BP=BF+PF=6+2x,OP=2FP=2x,推出PH=OP+OH=1+2x,则BP=2+4x,从而得到2+4x=6+2x,由此求解即可【详解】解:(1)如图所示,连接OA,OA=OB,OAB=OBA,OAB+OBA+AOB=180°,即OBA+ACB=90°,又OBA=CAE,ACB+CAE=90°,ADC=90°,AEBC;(2)如图所示,连接CE,ABC=AEC,AEBC,AEC=30°,ABC=30°;(3)如图所示,过点O作OFAB于F,BF=AF,设FP=x,BF=AF=AP+PF=6+x,BP=BF+PF=6+2xABC=30°,PHBC, BPH=60°,BP=2PH,又OFAB,OFP=90°,POF=30°,OP=2FP=2x,PH=OP+OH=1+2x,BP=2+4x,2+4x=6+2x,解得x=2,PF=2,BF=8,PO=4,圆O的半径长为【点睛】本题主要考查了圆周角定理,含30度角的直角三角形的性质,等腰三角形的性质,特殊角三角形函数值求度数,勾股定理,垂径定理等等,解题的关键在于能够正确作出辅助线求解5、(1)见解析;(2)lOA,经过半径的外端并且垂直于半径的直线是圆的切线【分析】(1)根据题中给出的作图步骤完成作图即可;(2)根据切线的判定定理证明即可【详解】(1)使用直尺和圆规,依作法补全图形如图所示;(2)完成下面的证明证明:在中,直线l垂直平分OB直线l经过半径OA的外端,且lOA,直线l是的切线(经过半径的外端并且垂直于半径的直线是圆的切线) 【点睛】本题考查了做垂线,切线的判定,掌握切线的判定定理是解题的关键

    注意事项

    本文(2021-2022学年度北师大版九年级数学下册第三章-圆难点解析试题(含详细解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开