2021-2022学年度北师大版八年级数学下册第四章因式分解专项攻克试卷(无超纲带解析).docx
-
资源ID:28173741
资源大小:368.76KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度北师大版八年级数学下册第四章因式分解专项攻克试卷(无超纲带解析).docx
北师大版八年级数学下册第四章因式分解专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算错误的是( )ABCD(a0)2、下列各式中,正确的因式分解是( )ABCD3、下列等式中,从左往右的变形为因式分解的是()Aa2a1a(a1)B(ab)(a+b)a2b2Cm2m1m(m1)1Dm(ab)+n(ba)(mn)(ab)4、下列各组式子中,没有公因式的一组是()A2xy与xB(ab)2与abCcd与2(dc)Dxy与x+y5、下列因式分解正确的是( )ABCD6、当n为自然数时,(n+1)2(n3)2一定能()A被5整除B被6整除C被7整除D被8整除7、若一个等腰三角形的两边m,n满足9m2n213,3mn13,则该等腰三角形的周长为( )A11B13C16D11或168、下列从左到右的变形,是因式分解的是( )A(x4)(x4)x216Bx2x6(x3)(x2)Cx21x(x)Da2bab2ab(ab)9、下列多项式中能用平方差公式分解因式的是( )ABCD10、三角形的三边长分别为a、b、c,如果a、b、c满足,则这个三角形是( )A等边三角形B直角三角形C等腰三角形D等腰直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:8a3b+8a2b22ab3_2、在ABC中,C90°,ACBC,D是AC上点,AD2CD,连接BD,过点D作DEBD与AB的垂线交于点E,DE交AB于点F,若,则线段BC_3、当x=4,a+b=-3时,代数式:ax+bx的值为_4、分解因式:_5、因式分解:_三、解答题(5小题,每小题10分,共计50分)1、(1)计算:(2)计算:(3)因式分解:(4)因式分解:2、(1)计算:(2)计算:(3)分解因式:;(4)分解因式:3、分解因式:4、因式分解:(1)(2)(3)5、(1)运用乘法公式计算:;(2)分解因式:-参考答案-一、单选题1、A【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a0),故该选项正确,不符合题意,故选A【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键2、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案【详解】解:,故此选项不合题意;,故此选项符合题意;,故此选项不合题意;,故此选项不合题意;故选:【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键3、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解故选D【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键4、D【分析】根据公因式是各项中的公共因式逐项判断即可【详解】解:A、2xy与x有公因式x,不符合题意;B、(ab)2与ab有公因式ab,不符合题意;C、cd与2(dc)有公因式cd,不符合题意;D、xy与x+y没有公因式,符合题意,故选:D【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键5、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键6、D【分析】先把(n+1)2(n3)2分解因式可得结果为:从而可得答案.【详解】解: (n+1)2(n3)2 n为自然数所以(n+1)2(n3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.7、C【分析】根据题意和通过因式分解得出m和n的两个关系式求出m、n,再分情况讨论求解即可【详解】解:9m2-n2=-13,3m+n=13,(3m+n)(3m-n)=-13,n-3m=1,由得:m=2,n=7;若2是腰长时,三角形的三边分别为2、2、7,2+27,不能组成三角形,若2是底边时,三角形的三边分别为2、7、7,能组成三角形,周长=7+7+2=16综上所述,等腰三角形的周长是16故选:C【点睛】本题考查了等腰三角形的定义、因式分解的应用、三角形的三边关系,难点在于要分情况讨论8、D【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键9、A【分析】利用平方差公式逐项进行判断,即可求解【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键10、A【分析】将等式因式分解为的形式,然后求得b=c,从而判断三角形的形状【详解】解:,这个三角形是等边三角形故选A【点睛】此题考查了因式分解的应用注意掌握因式分解的步骤,分解要彻底二、填空题1、2ab(2ab)2【分析】先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解【详解】解:原式2ab(4a24ab+b2)2ab(2ab)2,故答案为:2ab(2ab)2【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式2、【分析】过点作的延长线于点,连接,先证明,设,设,则,勾股定理分别求得,在与中,根据,列出关于的等式,求得,进而根据,求得的值,即可求得的长【详解】如图,过点作的延长线于点,连接,设,则,设,在中,在中,在中,在中,在与中, 即,解得或(舍去),解得(负值舍去),故答案为:【点睛】本题考查了勾股定理,等腰三角形的性质与判定,掌握勾股定理是解题的关键3、-12【分析】本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可【详解】解:x=4,a+b=-3ax+bx故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想4、x(x+2y)(x-2y)【分析】先提取公因式,再用平方差公式进行分解即可【详解】解:x3-4xy2=x(x2-4y2)=x(x+2y)(x-2y)故答案为:x(x+2y)(x-2y)【点睛】本题考查了分解因式,分解因式要先提取公因式,再运用公式,分解因式方法可以参考口诀“一提,二套,三分组,十字相乘做辅助”灵活运用所学方法进行分解,注意:分解要彻底5、【分析】先提公因式,再利用平方差公式即可;【详解】故答案为:【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提三、解答题1、(1)(2)(3)(4)【分析】(1)根据幂的运算法则和合并同类项法则计算即可;(2)先用平方差公式计算,再运用单项式乘多项式的法则计算即可;(3)先提取公因式,再运用平方差公式分解即可;(4)先进行整式运算,再因式分解即可【详解】解:(1)(2)=(3)(4)=【点睛】本题考查了整式的运算和因式分解,解题关键是熟记乘法公式和因式分解的方法,准确熟练的进行计算2、(1);(2);(3);(4)【分析】(1)根据多项式乘以单项式,利用多项式的每一项分别与单项式相乘,再把积相加进行计算即可;(2)首先计算小括号,再合并化简中括号里面,最后计算除法即可(3)原式提取公因式即可;(4)原式利用平方差公式 分解即可【详解】解:(1)原式;(2)原式,(3)原式;(4)原式【点睛】此题主要考查了整式的混合运算和提公因式法与公式法的综合运用,关键是掌握计算顺序:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算3、x(x3)(x3)【分析】先提取公因式x,然后利用平方差公式分解因式即可【详解】解:x39xx(x29) x(x3)(x3)【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键4、(1);(2);(3)【分析】(1)利用提取公式法因式分解即可;(2)利用提取公式法因式分解即可;(3)提取公因式2y,在利用完全平方公式因式分解即可【详解】解:(1);(2)(3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键5、(1);(2)【分析】(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可【详解】解:(1)=;(2)=【点睛】本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键