欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年度沪教版七年级数学第二学期第十四章三角形难点解析试题(含解析).docx

    • 资源ID:28174105       资源大小:835.56KB        全文页数:33页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年度沪教版七年级数学第二学期第十四章三角形难点解析试题(含解析).docx

    沪教版七年级数学第二学期第十四章三角形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将BEF对折,点B落在直线EF上的点B处,得折痕EM,将AEF对折,点A落在直线EF上的点A处,得折痕EN,则图中与BME互余的角有()A2个B3个C4个D5个2、下列长度的三条线段能组成三角形的是()A3 4 8B4 4 10C5 6 10D5 6 113、定理:三角形的一个外角等于与它不相邻的两个内角的和已知:如图,ACD是ABC的外角求证:ACDA+B证法1:如图,A70°,B63°,且ACD133°(量角器测量所得)又133°70°+63°(计算所得)ACDA+B(等量代换)证法2:如图,A+B+ACB180°(三角形内角和定理),又ACD+ACB180°(平角定义),ACD+ACBA+B+ACB(等量代换)ACDA+B(等式性质)下列说法正确的是()A证法1用特殊到一般法证明了该定理B证法1只要测量够100个三角形进行验证,就能证明该定理C证法2还需证明其他形状的三角形,该定理的证明才完整D证法2用严谨的推理证明了该定理4、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D65、如图,于点,与交于点,若,则等于( )A20°B50°C70°D110°6、如图,ABCDEF,点B、E、C、F在同一直线上,若BC7,EC4,则CF的长是( )A2B3C4D77、如图,点F,C在BE上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB3BC180°FGCDACE+B8、已知:如图,D、E分别在AB、AC上,若ABAC,ADAE,A60°,B25°,则BDC的度数是()A95°B90°C85°D80°9、如图,BD是的角平分线,交AB于点E若,则的度数是( )A10°B20°C30°D50°10、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )A3cmB6cmC10cmD12cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,等腰ABC中,ABAC,ÐA40°,点D在边AC上,ÐADB100°,则ÐDBC的度数为_ °2、如图,已知,请添加一个条件,使得,则添加的条件可以为_(只填写一个即可)3、如图,在ABC中,点D为BC边延长线上一点,若ACD75°,A45°,则B的度数为_4、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是_5、如图,ABCD,若要判定ABDCDB,则需要添加的一个条件是 _三、解答题(10小题,每小题5分,共计50分)1、如图,将一副直角三角板的直角顶点C叠放在一起(1)如图(1),若DCE33°,则BCD ,ACB (2)如图(1),猜想ACB与DCE的大小有何特殊关系?并说明理由(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则DAB与CAE的数量关系为 2、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由3、在等边中,D、E是BC边上两动点(不与B,C重合)(1)如图1,求的度数;(2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF依题意将图2补全;求证:4、如图所示,四边形的对角线、相交于点,已知,求证:(1);(2)5、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,ABU+CDV180°(1)如图1,求证:ABCD;(2)如图2,BEDF,MEBABE+5°,FDR35°,求MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MGEN,连接ME,GMEGEM,EBD2NEG,EB平分DEN,MHUV于点H,若EDCCDB,求GMH的度数6、如图,AD,BC相交于点O,AODO(1)如果只添加一个条件,使得AOBDOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);(2)根据已知及(1)中添加的一个条件,证明ABDC7、如图,在ABC中, ABAC,AD是ABC的中线,BE平分ABC交AD于点E,连接EC求证:CE平分ACB8、下面是“作一个角的平分线”的尺规作图过程已知:如图,钝角求作:射线OC,使作法:如图,在射线OA上任取一点D;以点为圆心,OD长为半径作弧,交OB于点E;分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;作射线OC则OC为所求作的射线完成下面的证明证明:连接CD,CE由作图步骤可知_由作图步骤可知_,(_)(填推理的依据)9、如图,在中,AD平分,于点E求证:10、如图,在等边三角形ABC中,点P为ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 (1)用等式表示 与CP的数量关系,并证明;(2)当BPC120°时, 直接写出 的度数为 ;若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明-参考答案-一、单选题1、C【分析】先由翻折的性质得到AEN=AEN,BEM=BEM,从而可知NEM=×180°=90°,然后根据余角的定义找出BME的余角即可【详解】解:由翻折的性质可知:AEN=AEN,BEM=BEMNEM=AEN+BEM=AEA+BEB=×180°=90°由翻折的性质可知:MBE=B=90°由直角三角形两锐角互余可知:BME的一个余角是BEMBEM=BEM,BEM也是BME的一个余角NBF+BEM=90°,NEF=BMEANE、ANE是BME的余角综上所述,BME的余角有ANE、ANE、BEM、BEM故选:C【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键2、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可【详解】解:A3+48,不能组成三角形,故本选项不符合题意;B4+410,不能组成三角形,故本选项不符合题意;C5+610,能组成三角形,故本选项符合题意;D5+6=11,不能组成三角形,故本选项不符合题意;故选:C【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键3、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.4、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键5、C【分析】由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数【详解】解:,故选:C【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键6、B【分析】根据全等三角形的性质可得,根据即可求得答案【详解】解:ABCDEF,点B、E、C、F在同一直线上,BC7,EC4,故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键7、C【详解】由题意根据等式的性质得出BCEF,进而利用SSS证明ABC与DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解:BFEC,BF+FCEC+FC,BCEF,在ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180°FGC,故选:C【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)8、C【分析】根据SAS证ABEACD,推出CB,求出C的度数,根据三角形的外角性质得出BDCA+C,代入求出即可【详解】解:在ABE和ACD中,ABEACD(SAS),CB,B25°,C25°,A60°,BDCA+C85°,故选C【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件9、B【分析】由外角的性质可得ABD20°,由角平分线的性质可得DBC20°,由平行线的性质即可求解.【详解】解:(1)A30°,BDC50°,BDCAABD,ABDBDCA50°30°20°,BD是ABC的角平分线,DBCABD20°,DEBC,EDB=DBC20°,故选:B【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键10、C【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.二、填空题1、30【分析】先根据等腰三角形的性质和三角形内角和定理求出,再根据三角形外角的性质求解即可【详解】解:ABAC,ÐA40°,ADB=DBC+C=100°,DBC=30°,故答案为:30【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,等腰三角形的性质,熟知相关知识是解题的关键2、或【分析】根据全等三角形的判定方法即可解决问题【详解】解:由题意,根据,可以添加,使得,根据,可以添加,使得故答案为:或【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、角角边、边边边是解题的关键3、30°【分析】根据三角形的外角的性质,即可求解【详解】解: , ,ACD75°,A45°, 故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键4、或【分析】因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论【详解】解:当为底时,其它两边都为,、可以构成三角形,周长为;当为底时,其它两边都为,、可以构成三角形,周长为;故答案为:或【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要5、1=2(或填AD=CB)【分析】根据题意知,在ABD与CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加1=2即可由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【详解】解:在ABD与CDB中,AB=CD,BD=DB,添加1=2时,可以根据SAS判定ABDCDB,添加AD=CB时,可以根据SSS判定ABDCDB,故答案为1=2(或填AD=CB).【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角三、解答题1、(1)57°,147°;(2)ACB180°DCE,理由见解析;(3)DAB+CAE120°【分析】(1)根据角的和差定义计算即可(2)利用角的和差定义计算即可(3)利用特殊三角板的性质,角的和差定义即可解决问题【详解】解:(1)由题意,;故答案为:57°,147° (2)ACB180°DCE, 理由如下: ACE90°DCE,BCD90°DCE, ACBACEDCEBCD90°DCEDCE90°DCE180°DCE (3)结论:DAB+CAE=120°理由如下:DAB+CAE=DAE+CAE+BAC+CAE=DAC+EAB,又DAC=EAB=60°,DAB+CAE=60°+60°=120°故答案为:DAB+CAE=120°【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型2、成立,证明见解析【分析】根据阅读材料将ADF旋转120°再证全等即可求得EF= BE+DF 【详解】解:成立证明:将绕点顺时针旋转,得到,、三点共线,【点睛】本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键3、(1);(2)作图见解析;证明见解析【分析】(1)等边三角形中,由知,进而求出的值;(2)作图见详解; ,点E,F关于直线对称,为等边三角形,进而可得到【详解】解:(1)为等边三角形(2)补全图形如图所示,证明:为等边三角形 ,点E,F关于直线对称,即为等边三角形【点睛】本题考察了等边三角形的判定与性质,等腰三角形的性质,轴对称的性质解题的关键在于角度的转化4、(1)证明见解析;(2)证明见解析【分析】(1)根据全等三角形的判定定理可直接证明;(2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明(1)解:在与中,;(2)由(1)可得:,即【点睛】题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键5、(1)见详解;(2)MEB40°,(3)GMH=80°【分析】(1)根据等角的补角性质得出ABD=CDV,根据同位角相等两直线平行可得ABCD;(2)根据ABCD;利用内错角相等得出ABD=RDB,根据BEDF,得出EBD=FDB,利用等量减等量差相等得出ABE=FDR,根据FDR35°,可得ABE=FDR=35°即可;(3)设ME交AB于S,根据MGEN,得出NES=GMS=GES,设NES=y°,可得NEG=NES+GES=2NES=2y°,根据EBD2NEG,得出EBD =4NES=4y°,根据EDCCDB,设EDC=x°,得出CDB=7x°,根据ABCD,得出GBE+EBD+CDB=180°,可得35+4y+7x=180根据三角形内角和BDE=BDC-EDC=7x-x=6x,BED=180°-EBD-EDB=180°-4y°-6x°,利用EB平分DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证MEUV,根据MHUV,可求SMH=90°,SMG=NES=10°即可【详解】(1)证明:ABU+ABD=180°,ABU+CDV180°ABU=180°-ABD,CDV180°-ABU,ABD=CDV,ABCD;(2)解:ABCD;ABD=RDB,ABE+EBD=FDB+FDR,BEDF,EBD=FDB,ABE=FDR,FDR35°,ABE=FDR=35°,MEBABE+5°=35°+5°=40°,(3)解:设ME交AB于S,MGEN,NES=GMS=GES,设NES=y°,EBD2NEGNEG=NES+GES=2NES=2y°,EBD =4NES=4y°,EDCCDB,设EDC=x°CDB=7x°,ABCD,ABD+CDB=180°,即GBE+EBD+CDB=180°,35+4y+7x=180,BDE=BDC-EDC=7x-x=6x,BED=180°-EBD-EDB=180°-4y°-6x°,EB平分DEN,NEB=BED,NEB=NES+SEB=y°+40°,y°+40°=180°-4y°-6x°,解得,EBD=4y°=40°=MEB,MEUV,MHUV,MHME,SMH=90°,SMG=NES=10°,GMH=90°-SMG=90°-10°=80°【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键6、(1)OB=OC(或,或);(2)见解析【分析】(1)根据SAS添加OB=OC即可;(2)由(1)得AOBDOC,由全等三角形的性质可得结论【详解】解:(1)添加的条件是:OB=OC(或,或)证明:在和中所以,AOBDOC(2)由(1)知,AOBDOC所以,ABDC【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键7、见解析【分析】根据等腰三角形的性质,可得ADB=ADC=90°,ABC=ACB,BD=CD,从而得到BDECDE,进而得到DCE=DBE,再由BE平分ABC,可得 ,进而得到,即可求证【详解】解:ABAC,AD是ABC的中线,ADB=ADC=90°,ABC=ACB,BD=CD,DE=DE,BDECDE,DCE=DBE,BE平分ABC, ,CE平分ACB【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键8、OE; CE;全等三角形的对应角相等【分析】根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论【详解】证明:连接CD,CE由作图步骤可知_OE_由作图步骤可知_CE_,(_全等三角形对应角相等_)故答案为:OE; CE;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)也考查了全等三角形的判定和性质9、证明见解析.【分析】延长CE交AB于F,求出AECAEF,FAECAE,根据ASA证FAECAE,推出ACEAFC,根据三角形外角性质得出AFCBECD,代入即可【详解】证明:延长CE交AB于F,CEAD,AECAEF,AD平分BAC,FAECAE,在FAE和CAE中, ,FAECAE(ASA),ACEAFC,AFCBECD,ACEBECD【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出AFCACE10、(1),理由见解析;(2)60°;PM,见解析【分析】(1)根据等边三角形的性质,可得ABAC,BAC60°,再由由旋转可知:从而得到,可证得,即可求解 ;(2)由BPC120°,可得PBCPCB60°根据等边三角形的性质,可得BAC60°,从而得到ABCACB120°,进而得到ABPACP60°再由,可得 ,即可求解;延长PM到N,使得NMPM,连接BN可先证得PCMNBM从而得到CPBN,PCMNBM进而得到 根据可得,可证得,从而得到 再由 为等边三角形,可得 从而得到 ,即可求解【详解】解:(1) 理由如下:在等边三角形ABC中,ABAC,BAC60°,由旋转可知: 即在和ACP中 (2)BPC120°,PBCPCB60°在等边三角形ABC中,BAC60°,ABCACB120°,ABPACP60° ,ABPABP60°即 ;PM 理由如下:如图,延长PM到N,使得NMPM,连接BNM为BC的中点,BMCM在PCM和NBM中 PCMNBM(SAS)CPBN,PCMNBM BPC120°,PBCPCB60°PBCNBM60°即NBP60°ABCACB120°,ABPACP60°ABPABP60°即 在PNB和 中 (SAS) 为等边三角形, ,PM 【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键

    注意事项

    本文(2021-2022学年度沪教版七年级数学第二学期第十四章三角形难点解析试题(含解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开