2021-2022学年度强化训练沪科版八年级下册数学期末练习-卷(Ⅱ)(含答案解析).docx
-
资源ID:28174135
资源大小:398.24KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度强化训练沪科版八年级下册数学期末练习-卷(Ⅱ)(含答案解析).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·沪科版八年级下册数学期末练习 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为了绿化荒山,某地区政府提出了2028年荒山的森林覆盖率达到45%的目标已知2019年该地区森林覆盖率已达到34%,若要在2021年使该地区荒山的森林覆盖率达到38%设从2019年起该地区荒山的森林覆盖率的年平均增长率为,则可列方程为( )ABCD2、若是关于x的一元二次方程的一个根,则m的值为( )AB0CD13、一元二次方程的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C无实数根D只有一个实数根4、估计的值应在( )A5和6之间B6和7之间C7和8之间D8和9之间5、如图,( )度A180B270C360D5406、下列二次根式中,化简后可以合并的是( )A和B和C和D和7、一元二次方程配方后可化为( )ABCD8、已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的周长为( )A9B12C2或5D9或129、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )ABCD10、下列式子为一元二次方程的是()A5x21B4a281· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·CD(3x2)(x+1)8y3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在长方形ABCD中,点E是BC边上一点,连接AE,把沿AE折叠,使点B落在点处当为直角三角形时,BE的长为_2、如图,P是AOB平分线上的一点,PCOA于点C,延长CP交OB于点D,以点P为圆心PD为半径作圆弧交OB于点E,连接PE,若PC6,PD10,则DE的长为 _3、若关于x的一元二次方程有两个不相等的解,则k的取值范围是_4、小明上学期数学平时成绩、期中成绩、期末成绩分别为93分、87分、90分,若将平时成绩、期中成绩、期末成绩按3:3:4的比例计算综合得分,则小明上学期数学综合得分为_分5、已知关于x的一元二次方程(k1)x22x10有实数根,则k的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、近几年,中学体育课程改革受到全社会的广泛关注,体育与健康课程标准中明确指出:“健康体魄是青少年为祖国和人民服务的基本前提”某校为了解九年级学生的锻炼情况,随机抽取一班与二班各10名学生进行一分钟跳绳测试,若一分钟跳绳个数为m,规定“不合格”,“及格”,“良好”,“优秀”对于学生一分钟跳绳个数相关数据收集、整理如下:一分钟跳绳次数(单位:个)一班:204 198 190 190 188 198 180 173 163 198二班:203 200 190 186 200 183 169 200 159 190数据分析:两组样本数据的平均数、众数、中位数如下表所示:班级平均数众数中位数一班188.2198190二班188200b二班学生一分钟跳绳成绩扇形统计图应用数据:(1)根据图表提供的信息,_(2)根据以上数据,你认为该年级一班与二班哪个班的学生一分钟跳绳成绩更好?请说明理由(写出一条理由即可);(3)该校九年级共有学生2000人,请估计一分钟跳绳成绩为“优秀”的共有多少人?2、计算:(1)(2)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·3、解方程:(y2)(1+3y)64、某中学初二年级游同学在学习了勾股定理后对九章算术勾股章产生了学习兴趣今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽问索长几何?”本题大意是:如图,木柱,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度5、接种疫苗是阻断新冠病毒传播的有效途经,为保障人民群众的身体健康,2021年11月我市启动新冠疫苗加强针接种工作已知11月甲接种点平均每天按种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人按种加强针(1)求11月平均每天分别有多少人前往甲、乙两接种点接种加强针?(2)12月份,在m天内平均每天接种加强针的人数,甲接种点比11月平均每天接种加强针的人数少人,乙接种点比11月平均每天接种加强针的人数多30%在这m天期间,甲、乙两接种点共有2250人接种加强针,求m的值-参考答案-一、单选题1、C【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设年平均增长率为x,根据“2019年我市森林覆盖率已达到34%,要在2021年使全市森林覆盖率达到38%”,可列出方程【详解】解:由题意可得:2020年,全市森林覆盖率为:34%(1+x);2021年,全市森林覆盖率为:34%(1+x)(1+x)=34%(1+x)2;所以可列方程为34%(1+x)2=38%;故选C【点睛】本题考查求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b2、C【分析】将代入方程得到关于的方程,然后解方程即可【详解】解:将代入方程得:,解得:m=故选:C【点睛】本题考查了一元二次方程根的定义,将已知方程的一个根代入方程得到新的方程是解答本题关键3、A【分析】根据根的判别式即可求出答案【详解】解:原方程化为:,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故选:A【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式,本题属于基础题型4、B【分析】化简原式等于,因为,所以,即可求解.【详解】解:=,67,故选:B【点睛】本题考查二次根式的除法和无理数的估算;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键5、C【分析】根据三角形外角的性质,可得 ,再由四边形的内角和等于360°,即可求解【详解】解:如图, 根据题意得: , ,故选:C【点睛】本题主要考查了三角形外角的性质,多边形的内角和,熟练掌握三角形外角的一个外角等于与它不相邻的两个内角的和,四边形的内角和等于360°是解题的关键6、B【分析】先化简,再根据同类二次根式的定义解答即可【详解】解:、化简得:和不是同类二次根式,不能合并同类项,不符合题意;、化简得:和是同类二次根式,可以合并,不符合题意;、化简得:和,不是同类二次根式,不能合并同类项,不符合题意;、和被开方数不同,不是同类二次根式,不符合题意;故选:B【点睛】本题主要考查了同类二次根式的定义,解题的关键是掌握化成最简二次根式后,被开方数相同,这样· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·的二次根式叫做同类二次根式7、B【分析】先将6除以2,得到b的取值,再添加b²,为了保持式子大小不变,后面再减去b²,则等式左边变成了完全平方,剩余的常数移到等式右边即可【详解】解:故选B【点睛】本题考查配方法,掌握如何配方是本题关键8、B【分析】因式分解法求得方程的根,根据等腰三角形的性质,确定三边,在三角形存在的前提下,计算周长【详解】,等腰三角形的三边长为2,2,5,不满足三边关系定理,舍去;或2,5,5,满足三边关系定理,等腰三角形的周长为2+5+5=12,故选B【点睛】本题考查了一元二次方程的解法,三角形的三边关系定理,等腰三角形的性质,熟练掌握一元二次方程的解法,三角形三边关系定理是解题的关键9、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在RtEFC中利用勾股定理列出方程,通过解方程可得答案【详解】解: 矩形ABCD, 设BE=x, AE为折痕, AB=AF=1,BE=EF=x,AFE=B=90°, RtABC中,RtEFC中,EC=2-x, , 解得:, 则点E到点B的距离为: 故选:C【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键10、B【详解】解:A、不是方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、分母中含有未知数,不是一元二次方程,故本选项不符合题意;D、含有两个未知数,不是一元二次方程,故本选项不符合题意;故选:B【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的次数的最高次数为1的整式方程称为一元二次方程是解题的关键二、填空题1、或3【分析】分两种情形:如图1中,当,共线时,如图2中,当点落在上时,分别求解即可【详解】解:如图1中,当,共线时,四边形是矩形,设,则,在中,如图2中,当点落在上时,此时四边形是正方形,综上所述,满足条件的的值为或3故答案是:或3【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,解题的关键是学会用分类讨论的思想思考问题2、16【分析】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·过点P作PFOB,由角平分线的性质求得PF的长,在直角三角形中,由直角三角形的性质得出EF的长,进而解答即可【详解】解:过点P作PFOB,P是AOB平分线上的一点,PCOA于点C,PFOB,PC=PF=6,PE=PD=10,在RtPEF中,ED=2EF=16,故答案为:16【点睛】本题主要考查角平分线,勾股定理和等腰三角形的判定及计算技巧借助于角平分线和直角三角形求解边长从而求得最后结果3、【分析】根据根的判别式解答【详解】解:,一元二次方程有两个不相等的解,>0,解得,故答案为:【点睛】此题考查了利用一元二次方程根的情况求参数的取值范围,正确掌握一元二次方程根的判别式的三种情况是解题的关键4、90【分析】由题意直接根据加权平均数的计算方法列式进行计算即可得解【详解】解:90(分)故小明上学期数学综合得分为90分故答案为:90【点睛】本题考查加权平均数的求法,要注意乘以各自的权,直接相加除以3是错误的求法· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·5、k0且k1【分析】一元二次方程有实数根,利用判别式大于等于零和二次项系数不为零得出参数取值范围【详解】一元二次方程有实数根解得k0且k1故答案为:k0且k1【点睛】本题考查判别式的应用、一元二次方程的定义;掌握这些是本题关键三、解答题1、(1)270(2)我认为一班学生一分钟跳绳成绩更好,理由见解析(3)500人【分析】(1)根据优秀率的计算公式及中位数的定义分别求出a、b的值再计算即可;(2)利用表格中的平均数比较得到一班成绩较好;(3)用总人数2000乘以两个班级总的优秀率即可(1)解:二班优秀的有4人,成绩分别为:203,200,200,200优秀率为a%=,a=40;一班成绩由低到高排列为163,173,180,188,190,190,198,198,198,204,居中的两个数为190,190,故中位数b=190,故答案为:270;(2)解:我认为一班学生一分钟跳绳成绩更好,理由如下:一班学生一分钟跳绳平均数188.2大于二班学生一分钟跳绳平均数188,所以一班学生一分钟跳绳成绩更好(3)解:由一分钟跳绳次数得,一班二班优秀的占比为,所以九年级一分钟跳绳优秀的学生大约为人【点睛】此题考查了统计运算,掌握优秀率的计算公式,中位数的定义,利用数据分析得到结论,计算总体中某部分的数量,能读懂统计表并正确分析数据是解题的关键2、(1)2(2)x=-【分析】(1)根据二次根式的乘法、负整数指数幂和零指数幂的运算法则计算,再合并即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)解:=2;(2)解:去分母得:x2+2-(x2-1)=-4(x+1),去括号得:x2+2-x2+1=-4x-4,移项合并得:4x=-4-2-1,解得:x=-,检验:把x=-代入得:(x+1) (x-1)0,分式方程的解为x=-【点睛】本题考查了二次根式的混合运算,负整数指数幂和零指数幂的运算,解分式方程,解分式方程注意要检验3、【分析】先将方程化成一般形式,再利用因式分解法解一元二次方程即可得【详解】解:化成一般形式为,因式分解,得,或,或,故方程的解为【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键4、绳索长是尺【分析】设,则,由勾股定理及即可求解【详解】设,则,在中,解得:,答:绳索长是尺【点睛】本题考查勾股定理得应用,用题意列出等量关系式是解题的关键5、(1)11月平均每天分别有240人前往甲接种点接种加强针,有200人前往乙两接种点接种加强针(2)5· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【分析】(1)设平均每天在乙接种点接种加强针的有x人,根据“11月甲接种点平均每天按种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人按种加强针”列出方程求解即可;(2)根据m天期间,甲、乙两接种点共有2250人接种加强针列出方程求解即可得m的值(1)设平均每天在甲接种点接种有x人,则到乙接种点接种加强针的人数为(1-20%)x,根据题意得, 解得,x=200答:11月平均每天分别有240人前往甲接种点接种加强针,有200人前往乙两接种点接种加强针(2)根据题意得, 整理得, 解得,(不合题意,舍去)所以,m的值为5【点睛】本题主要考查了一元一次方程的应用和一元二次方程的应用,解题的关键是读懂题意,找到等量关系,列出方程并解答