2021-2022学年北师大版八年级数学下册第四章因式分解专题攻克练习题(无超纲).docx
-
资源ID:28174176
资源大小:156.49KB
全文页数:14页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年北师大版八年级数学下册第四章因式分解专题攻克练习题(无超纲).docx
北师大版八年级数学下册第四章因式分解专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果x2+kx10(x5)(x+2),则k应为()A3B3C7D72、下列等式从左到右的变形,属于因式分解的是( )ABCD3、下列各式能用公式法因式分解的是( )ABCD4、下列从左边到右边的变形,是因式分解的是( )A(3x)(3x)9x2Bx2y2(xy)(xy)Cx2xx(x1)D2yzy2zzy(2zyz)z5、下列因式分解正确的是( )Ax24x4x(x4)4B96(mn)(nm)2(3mn)2C4x22x1(2x1)2Dx4y4(x2y2)(x2y2)6、若a2b+2,b2a+2,(ab)则a2b22b+2的值为( )A1B0C1D37、若能分解成两个因式的积,则整数a的取值可能有( )A4个B6个C8个D无数个8、下列各式由左边到右边的变形中,是因式分解的为( )Aa(x+y)ax+ayB10x25x5x(2x1)Cx24x+4(x4)2Dx216+3x(x+4)(x4)+3x9、运用平方差公式对整式进行因式分解时,公式中的可以是( )ABCD10、下列因式分解正确的是( )A16m24(4m2)(4m2)Bm41(m21)(m21)Cm26m9(m3)2D1a2(a1)(a1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、因式分解:_3、因式分解:=_4、把多项式因式分解的结果是_5、已知x2+mx+16能用完全平方公式因式分解,则m的值为 _三、解答题(5小题,每小题10分,共计50分)1、因式分解(1)(2)2、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程解:设x2+2x=y,原式 =y(y+2)+1 (第一步)=y2+2y+1 (第二步)=(y+1)2 (第三步)=(x2+2x+1)2 (第四步)(1)该同学第二步到第三步运用了因式分解的( )A提取公因式 B平方差公式C两数和的完全平方公式 D两数差的完全平方公式(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后? (填“是”或“否”)如果否,直接写出最后的结果 (3)请你模仿以上方法尝试对多项式(x24x+3)(x24x+5)+1进行因式分解3、把下列各式因式分解:(1) (2)4、将下列多项式进行因式分解:(1);(2)5、分解因式:-参考答案-一、单选题1、A【分析】根据多项式乘以多项式把等号右边展开,即可得答案【详解】解:(x-5)(x+2)=x2-3x-10,则k=-3,故选:A【点睛】本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q)2、B【分析】根据因式分解的定义直接判断即可【详解】解:A等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B等式从左到右的变形属于因式分解,故本选项符合题意;C没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解3、A【分析】利用完全平方公式和平方差公式对各个选项进行判断即可【详解】解:A、,故本选项正确;B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误故选:A【点睛】本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键4、C【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可【详解】解:A、(3x)(3x)9x2属于整式的乘法运算,不是因式分解,不符合题意;B、,原式错误,不符合题意;C、x2xx(x1),属于因式分解,符合题意;D、2yzy2zz,原式分解错误,不符合题意;故选:C【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键5、B【分析】利用公式法进行因式分解判断即可【详解】解:A、,故A错误,B、96(mn)(nm)2(3mn)2,故B正确,C、4x22x1,无法因式分解,故C错误,D、,因式分解不彻底,故D错误,故选:B【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底6、D【分析】由a2=b+2,b2=a+2,且ab,可得a+b=1,将a2-b2-2b+2变形为(a+b)(a-b)2b+2,再代入计算即可求解【详解】解:a2=b+2,b2=a+2,且ab,a2b2=ba,即(a+b)(a-b)=b-a,a+b=1,a2-b2-2b+2=(a+b)(a-b)2b+2=ba-2b+2=-(a+b)+2=1+2=3故选:D【点睛】本题考查了代数式求值,解题的关键是求得a+b=1,将a2-b2-2b+2变形为(a+b)(a-b)2b+2是解题的关键7、B【分析】把18分解为两个整数的积的形式,a等于这两个整数的和【详解】解:18=1×18=2×9=3×6=(-1)×(-18)=(-2)×(-9)=(-3)×(-6),所以a=1+18=19或2+9=11或3+6=9或(-1)+(-18)=-19或(-2)+(-9)=-11或(-3)+(=6)=-9整数a的值是±9或±11或±19,共有6个故选:B【点睛】本题考查了十字相乘法分解因式,对常数项的不同分解是解题的关键8、B【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可【详解】解:A. a(x+y)ax+ay,多项式乘法,故选项A不合题意B. 10x25x5x(2x1)是因式分解,故选项B符合题意;C. x24x+4(x2)2因式分解不正确,故选项C不合题意;D. x216+3x(x+4)(x4)+3x,不是因式分解,故选项D不符合题意故选B【点睛】本题考查因式分解,掌握因式分解的定义是解题关键9、C【分析】运用平方差公式分解因式,后确定a值即可【详解】=,a是2mn,故选C【点睛】本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键10、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9=(m-3)2,故该选项正确;D、1-a2=(a+1)(1-a),故该选项错误;故选:C【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止二、填空题1、【分析】根据提取公因式法,提取公因式即可求解【详解】解:,故答案为:【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法2、【分析】直接提取公因式,再利用完全平方公式分解因式得出答案【详解】解:原式 故答案为:【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键3、【分析】原式提取a,再利用完全平方公式分解即可【详解】解:原式=a(m2-2mn+n2)=a(m-n)2,故答案为:a(m-n)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键4、【分析】先提取公因式,在利用公式法计算即可;【详解】原式;故答案是:【点睛】本题主要考查了利用提取公因式法和公式法进行因式分解,准确利用公式求解是解题的关键5、【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案【详解】解:要使得能用完全平方公式分解因式,应满足,故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键三、解答题1、(1);(2)【分析】(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.【详解】解:(1)原式(2)原式【点睛】本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.2、(1)C;(2)否,;(3)【分析】(1)根据题意可知,第二步到第三步用到了完全平方公式;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;(3)仿照题意,设然后求解即可【详解】解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式 ,故选C;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,分解分式的结果为:,故答案为:否,;(3)设 【点睛】本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意3、(1);(2)【分析】(1) 提取公因式,即可得到答案;(2)先把原式化为,再提取公因式,即可得到答案 【详解】(1),原式 ;(2) ,原式,【点睛】本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键4、(1);(2)【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可【详解】解:(1)原式;(2)原式【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法5、【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可【详解】解:原式=【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键