2021-2022学年最新北师大版八年级数学下册第四章因式分解章节训练试题(含详解).docx
-
资源ID:28174342
资源大小:227.77KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年最新北师大版八年级数学下册第四章因式分解章节训练试题(含详解).docx
北师大版八年级数学下册第四章因式分解章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不论x,y取何实数,代数式x24xy26y13总是( )A非负数B正数C负数D非正数2、下列多项式中能用平方差公式分解因式的是( )ABCD3、下列各式中,从左到右的变形是因式分解的是( )ABCD4、下列分解因式正确的是( )ABCD5、若a2b+2,b2a+2,(ab)则a2b22b+2的值为( )A1B0C1D36、下列因式分解中,正确的是( )Ax2-4x+4=xx-4+4B4a2-12a+9=(2a+3)2Cab2-c2=ab2-c2D(x+3)2-4=x+5x+17、如果x2+kx10(x5)(x+2),则k应为()A3B3C7D78、下列各式中,从左到右的变形是因式分解的是()A2a22a+12a(a1)+1B(x+y)(xy)x2y2Cx24xy+4y2(x2y)2Dx2+1x(x+)9、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A2B3C4D510、三角形的三边长分别为a、b、c,如果a、b、c满足,则这个三角形是( )A等边三角形B直角三角形C等腰三角形D等腰直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知x2+mx+16能用完全平方公式因式分解,则m的值为 _2、因式分解:_3、若多项式5x217x12可因式分解成(xa)(bxc),其中a、b、c均为整数,则a,b,c的中位数是_4、(_)(_);(_)(_);(_)(_);(_)(_);(_)(_);(_)(_)5、已知a,则a22a3的值为_三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1);(2) (7x22y2)2(2x27y2)22、(1)计算:(2)计算:(3)因式分解:(4)因式分解:3、分解因式:x3y6x2y2+9xy34、因式分解:(x2+9)236x25、(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值-参考答案-一、单选题1、A【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x24xy26y13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.2、A【分析】利用平方差公式逐项进行判断,即可求解【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键3、C【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.4、C【分析】根据因式分解的方法逐个判断即可【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解5、D【分析】由a2=b+2,b2=a+2,且ab,可得a+b=1,将a2-b2-2b+2变形为(a+b)(a-b)2b+2,再代入计算即可求解【详解】解:a2=b+2,b2=a+2,且ab,a2b2=ba,即(a+b)(a-b)=b-a,a+b=1,a2-b2-2b+2=(a+b)(a-b)2b+2=ba-2b+2=-(a+b)+2=1+2=3故选:D【点睛】本题考查了代数式求值,解题的关键是求得a+b=1,将a2-b2-2b+2变形为(a+b)(a-b)2b+2是解题的关键6、D【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断【详解】解:A、原式=(x-2)2,不符合题意;B、原式=(2a-3)2,不符合题意;C、原式不能分解,不符合题意;D、原式=(x+3+2)(x+3-2)=(x+5)(x+1),符合题意故选:D【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键7、A【分析】根据多项式乘以多项式把等号右边展开,即可得答案【详解】解:(x-5)(x+2)=x2-3x-10,则k=-3,故选:A【点睛】本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q)8、C【分析】根据因式分解的定义逐个判断即可【详解】解:A从左到右的变形不属于因式分解,故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式9、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解10、A【分析】将等式因式分解为的形式,然后求得b=c,从而判断三角形的形状【详解】解:,这个三角形是等边三角形故选A【点睛】此题考查了因式分解的应用注意掌握因式分解的步骤,分解要彻底二、填空题1、【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案【详解】解:要使得能用完全平方公式分解因式,应满足,故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键2、【分析】直接提取公因式,再利用完全平方公式分解因式得出答案【详解】解:原式 故答案为:【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键3、4【分析】首先利用十字交乘法将5x2+17x-12因式分解,继而求得a,b,c的值【详解】利用十字交乘法将5x2+17x-12因式分解,可得:5x2+17x-12=(x+4)(5x-3)=(xa)(bxc),的中位数是4a,b,c的中位数是4故答案为:4【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a、b、c的值是得出正确答案的关键4、;【分析】利用十字相乘法进行因式分解即可得【详解】解:;故答案为:;【点睛】本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键二次三项式,若存在 ,则5、-2【分析】将所求算式因式分解,再将代入,整理,最后利用平方差公式计算即可【详解】解: ,将代入得:故答案为:-2【点睛】本题考查因式分解,代数式求值以及平方差公式利用整体代入的思想是解答本题的关键三、解答题1、(1);(2)【分析】(1)先提出公因式,再利用完全公式,即可求解;(2)先利用平方差公式分解,再提公因式,然后利用平方差公式,即可求解【详解】解:(1) ;(2) 【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键2、(1)(2)(3)(4)【分析】(1)根据幂的运算法则和合并同类项法则计算即可;(2)先用平方差公式计算,再运用单项式乘多项式的法则计算即可;(3)先提取公因式,再运用平方差公式分解即可;(4)先进行整式运算,再因式分解即可【详解】解:(1)(2)=(3)(4)=【点睛】本题考查了整式的运算和因式分解,解题关键是熟记乘法公式和因式分解的方法,准确熟练的进行计算3、【分析】先提取公因式xy,再根据完全平方公式分解因式【详解】解: = 【点睛】考查了因式分解-运用公式法,要注意公式的综合应用,分解到每一个因式都不能再分解为止4、【分析】利用平方差公式和完全平方公式分解因式即可【详解】解: 【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式5、(1)a=0;(x+1)(x2x+1);(2)31;【分析】(1)先将x=1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定b、c的值,再因式分解多项式;(2)设3x4+ax3+bx34=(x+1)(x2)M,则x=1,x=2是方程3x4+ax3+bx34=0的解,然后解关于a、b的方程组,即可得到答案【详解】解:(1)x+1是多项式x3+ax+1的因式,当x=1时,x3+ax+1=0,1a+1=0,a=0,令x3+1=(x+1)(x2+bx+c),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,等式两边x同次幂的系数相等,即x3+(b+1)x2+(c+b)x+c=x3+1,解得:,a的值为0,x3+1=(x+1)(x2x+1);(2)设3x4+ax3+bx34=(x+1)(x2)M(其中M为二次整式),x=1,x=2是方程3x4+ax3+bx34=0的解,a+b=8+(39)=31;【点睛】本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题