2021-2022学年浙教版初中数学七年级下册第五章分式定向攻克试题(含答案及详细解析).docx
-
资源ID:28175067
资源大小:195.57KB
全文页数:13页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年浙教版初中数学七年级下册第五章分式定向攻克试题(含答案及详细解析).docx
初中数学七年级下册第五章分式定向攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为()A0.6×108B6×108C60×107D0.6×1072、若a0.52,b52,c(5)0,那么a、b、c三数的大小为()AacbBcabCabcDcba3、化简的结果是()ABCD1x4、下列计算结果正确的是( )ABCD5、有一种花粉的直径是0.000064米,将0.000064用科学记数法表示应为( )ABCD6、一种花瓣的花粉颗粒直径约为0.00000065米,0.00000065用科学记数法表示为()A6.5×105B6.5×106C6.5×107D65×1067、等于( )ABCD8、当分式的值为0时,x的值为( )A0B2C0或2D 9、空气中某种微粒的直径是0.000002967米,将0.000002967用科学记数法表示为( )ABCD10、新冠疫苗载体腺病毒的直径约为0.000085毫米,将数0.000085用科学记数法表示为( )A85×10-6B8.5×10-5C8.5×10-6D0.85×10-4二、填空题(5小题,每小题4分,共计20分)1、化简:_2、已知,则a,b,c的大小关系为_3、若0a1,2b1,则=_4、_(结果不含负指数)5、用科学记数法表示:_三、解答题(5小题,每小题10分,共计50分)1、(1)计算:;(2)化简:2、(1)计算:(2)化简:3、计算:4、探索发现:1;根据你发现的规律,回答下列问题:(1) , ;(2)利用你发现的规律计算:5、计算(1) (2)-参考答案-一、单选题1、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000066×108,故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、B【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案【详解】a0.520.25,b52,c(5)01,cab故选:B【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键3、A【分析】先把分子分母分别分解因式,约去分式的分子与分母的公因式即可【详解】解:,故选:A【点睛】本题考查的是分式的约分,约分约去的是分子分母的公因式,把分子分母分别分解因式是解本题的关键.4、C【分析】根据运算的法则逐一运算判断即可【详解】解:,故此选项错误;:,故此选项错误;:,故此选项正确;:,故此选项错误;故答案为:【点睛】本题主要考查了同类型的合并,同底数幂的乘法,负指数幂,零指数幂,熟悉掌握运算的法则是解题的关键5、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000646.4×105故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定6、C【分析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】解:0.00000065的小数点向右移动7位得到6.5,所以数字0.00000065用科学记数法表示为6.5×107,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值7、A【分析】直接利用负整数指数幂的性质化简得出答案【详解】解:3-1=,故选:A【点睛】此题主要考查了负整数指数幂的性质,正确掌握相关性质是解题关键8、A【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案【详解】解:分式值为0,2x0,解得:x0故选:A【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零是解题的关键9、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:将0.000002967用科学记数法表示为2.967×106故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可【详解】解: 0.000085=8.5×10-5, 故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题1、【分析】先通分,化为同分母分式,再计算同分母分式的加减运算,从而可得答案.【详解】解:原式,故答案为:【点睛】本题考查的是异分母的分式的加减运算,掌握“先通分,化为同分母分式”是解题的关键,易错点是运算过程中的符号问题.2、【分析】分别求出各数的值,再比较大小即可【详解】解:,;,;故答案为:【点睛】本题考查了负指数、0指数和乘方运算,解题关键是熟记负指数、0指数和乘方运算的法则,准确进行计算3、2【分析】先根据题意得出a10,b+20,再根据绝对值的性质化简即可解答【详解】解:0a1,2b1,a10,b+20,=11=2,故答案为:-2【点睛】本题考查有理数的减法运算、绝对值的性质,会利用绝对值的性质化简是解答的关键4、【分析】根据负指数幂的运算法则和积的乘方运算法则求解即可【详解】解:,故答案为:【点睛】此题考查了负指数幂的运算,解题的关键是熟练掌握负指数幂的运算法则和积的乘方运算法则5、【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数【详解】解:,故答案为:【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,正确确定a的值以及n的值是解决问题的关键三、解答题1、(1)1;(2)-1【分析】(1)根据绝对值的意义及零次幂的性质进行计算即可;(2)分别运用平方差公式及同底数幂的除法法则进行计算,再合并同类项即可【详解】解:(1) ;(2) 【点睛】本题考查了实数及整式的混合运算,熟练掌握相关运算法则及性质是解题的关键2、(1)-4;(2)【分析】(1)通过负指数幂、零次幂及有理数的乘方可进行求解;(2)根据积的乘方、单项式乘单项式及单项式除单项式可进行求解【详解】解:(1)原式=;(2)原式=【点睛】本题主要考查负指数幂、零次幂、积的乘方、单项式乘单项式及单项式除单项式,熟练掌握相关运算法则是解题的关键3、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算【详解】解:, , 【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值4、(1),;(2)【分析】(1)观察已知等式,写出所求即可;(2)归纳总结得到一般性规律,写出即可;【详解】解:(1),(2)原式 , 【点睛】此题考查了有理数的混合运算,以及规律型:数字的变化类,弄清题中的规律是解本题的关键5、(1);(2)【分析】(1)根据负整指数幂,零次幂,有理数的乘方运算计算即可;(2)根据同底数幂的乘法,幂的乘方进行计算,最后合并同类项【详解】(1)(2) 【点睛】本题考查了负整指数幂,零次幂,有理数的乘方运算,同底数幂的乘法,幂的乘方,掌握以上运算法则是解题的关键