北师大版七年级数学下册第五章生活中的轴对称综合测试试题(含解析).docx
-
资源ID:28176224
资源大小:1.13MB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
北师大版七年级数学下册第五章生活中的轴对称综合测试试题(含解析).docx
七年级数学下册第五章生活中的轴对称综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形网格中, A,B两点均在直线a上方,要在直线a上求一点P,使PAPB的值最小,则点P应选在( )AC点BD点CE点DF点2、下列四个图标中,是轴对称图形的是( )ABCD3、下面是福州市几所中学的校标,其中是轴对称图形的是()ABCD4、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”下列四个剪纸图案是轴对称图形的为( )ABCD5、在千家万户团圆的时刻,我市一批医务工作者奔赴武汉与疫情抗争,他们是“最美逆行者”.下列艺术字中,可以看作是轴对称图形的是( )A BCD6、下列垃圾分类的标识中,是轴对称图形的是( )ABCD7、下列学习用具中,不是轴对称图形的是()ABCD8、下列图案中,不是轴对称图形的为( )ABCD9、下列图形中,是轴对称图形的是( )ABCD10、如图,在的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的为格点三角形,在图中与成轴对称的格点三角形可以画出( )A6个B5个C4个D3个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、图中与标号“1”的三角形成轴对称的三角形的个数为_ 2、如图,把一张长方形的纸条按如图那样折叠后,若量得DBA40°,则ABC的度数为 _度3、如图,将一张长方形纸条ABCD沿EF折叠,若EFG47°,则BGP_4、如图,与关于直线对称,则B的度数为_°5、如图,在RtABC中,ACB90°,AB4,点D、E分别在AB、AC上,且AD连接DE,将ADE沿DE翻折,使点A的对应点F落在BC的延长线上,连接FD,且FD交AC于点G若FD平分EFB,则ADE_°,FG_ 三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC和直线l,作出ABC关于直线l的对称图形A'B'C(不写作法,保留作图痕迹)2、如图,已知四边形ABCD与四边形EFGH关于直线MN对称,D130°,A+B155°,AD4cm,EF5cm(1)求出AB,EH的长度以及G的度数;(2)连接AE,DH,AE与DH平行吗?为什么?3、如图,正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A,B都在格点上,按下列要求作图,使得所画图形的顶点均在格点上(1)在图1中画一个以线段为边的轴对称,使其面积为2;(2)在图2中画一个以线段为边的轴对称四边形,使其面积为64、如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示,用坐标描述这个运动,找出小球运动的轨迹上几个关于直线l对称的点,如果小球起始时位于(1,0)处,仍按原来方向击球,请你画出这时小球运动的轨迹5、如图,是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形(阴影部分)为轴对称图形,并画出它的对称轴-参考答案-一、单选题1、C【分析】取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求【详解】解:如图所示,取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求,故选C【点睛】本题主要考查了轴对称最短路径问题,解题的关键在于能够熟练掌握轴对称最短路径的相关知识2、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行求解即可【详解】解:A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、是轴对称图形,故符合题意;D、不是轴对称图形,故不符合题意;故选C【点睛】本题主要考查了轴对称图形的识别,解题的关键在于能够熟知轴对称图形的定义3、A【分析】结合轴对称图形的概念进行求解即可【详解】A、是轴对称图形,本选项符合题意;B、不是轴对称图形,本选项不合题意;C、不是轴对称图形,本选项不合题意;D、不是轴对称图形,本选项不合题意故选:A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键5、B【分析】把一个图形沿某一条直线对折,直线两旁的部分能够完全重合的图形叫做轴对称图形,根据定义判断即可【详解】解:A、不是轴对称图形B、是轴对称图形C、不是轴对称图形D、不是轴对称图形故选:B【点睛】本题主要是考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解题的关键6、B【详解】解:图和是轴对称图形,故选:B【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键7、B【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一分析即可.【详解】解:选项A中的图形是轴对称图形,故A不符合题意;选项B中的图形不是轴对称图形,故B符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选B【点睛】本题考查的是轴对称图形的识别,掌握轴对称图形的定义是解题的关键.8、D【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可【详解】解:A中图形是轴对称图形,不符合题意;B中图形是轴对称图形,不符合题意;C中图形是轴对称图形,不符合题意;D中图形不是轴对称图形,符合题意,故选:D【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键9、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键10、A【分析】直接利用轴对称图形的性质分别得出符合题意的答案【详解】解:符合题意的三角形如图所示:分三类对称轴为横向:对称轴为纵向:对称轴为斜向:满足要求的图形有6个故选:A【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义二、填空题1、2个【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)即可得【详解】解:图中与标号“1”的三角形成轴对称的三角形是标号“2”和“4”,共有2个,故答案为:2个【点睛】本题考查了轴对称图形,熟记定义是解题关键2、70【分析】由DBA的度数可知ABE度数,再根据折叠的性质可得ABCEBCABE即可【详解】解:延长DB到点E,如图:DBA40°,ABE180°DBA180°40°140°,又把一张长方形的纸条按如图那样折叠,ABCEBCABE70°,故答案为:70【点睛】本题主要考查了折叠的性质和邻补角的定义,属于基础题目,得到ABCABE是解题的关键3、86°【分析】由长方形的对边平行得到AD与BC平行,利用两直线平行内错角相等得到DEFEFG47°,BGPAEP,根据折叠的性质得到GEFDEF47°,根据平角的定义求出AEP的度数,即可确定出BGP的度数【详解】解:四边形ABCD是长方形,ADBC,DEFEFG47°,BGPAEP,由折叠的性质得到GEFDEF47°,AEP180°DEFGEF86°,BGP86°故答案为:86°【点睛】此题考查了平行线的性质,折叠的性质以及平角定义,熟练掌握平行线的性质是解本题的关键4、105°【分析】根据轴对称的性质,轴对称图形全等,则A=A,B=B,C=C,再根据三角形内角和定理即可求得【详解】ABC与ABC关于直线l对称,ABCABC,A=A,B=B,C=C,C=C=40°,A=A=35°B=180°35°40°=105°故答案为:105°【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键5、45° 【分析】先根据题意可得BD4,FCG90°,再根据翻折的性质可得,结合FD平分EFB可得,由此可证得ADGFCG90°,则,进而可证明,由此可得,进而即可求得FG的长【详解】解:AB4,AD,BDABAD4,ACB90°,FCG180°ACB90°,翻折,FD平分EFB,又,即ADGFCG90°,FDB180°ADG90°ADG,在与中,故答案为:45°;【点睛】本题考查了翻折的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决本题的关键三、解答题1、见解析【分析】分别作点点点关于直线的对称点,然后连接,即可得到ABC关于直线的轴对称图形【详解】解:如图:即为所作:【点睛】本题考查了轴对称变换,作轴对称图形的依据是轴对称的性质,基本作法是:先确定图形的关键点;利用轴对称的性质作出关键点的对称点;按原图形中的方式顺次连接对称点2、(1);(2),理由见解析【分析】(1)先根据四边形的内角和为360°和已知条件求得的度数,进而根据轴对称的性质求得AB,EH的长度以及G的度数;(2)根据对称的性质可知,对称轴垂直平分对应的两点连成的线段,则,进而根据垂直于同一直线的两直线平行即可进行判断【详解】解:(1)四边形ABCD中,D130°,A+B155°,四边形ABCD与四边形EFGH关于直线MN对称,AD4cm,EF5cm,(2)连接AE,DH,则已知四边形ABCD与四边形EFGH关于直线MN对称,的对称点分别为,则【点睛】本题考查了轴对称的性质,四边形内角和,掌握轴对称的性质是解题的关键3、(1)作图见详解;(2)作图见详解【分析】(1)根据轴对称图形的性质及面积作图即可;(2)根据题意,作出相应轴对称图形,验证面积即可得【详解】解:(1)根据题意:为轴对称图形,面积为2,由图可得:,即为所求,(答案不唯一);(2)四边形ABDE为轴对称图形,面积为:,四边形ABDE即为所求(答案不唯一)【点睛】题目主要考查轴对称图形的作法,理解题意,熟练运用轴对称的性质是解题关键4、见解析【分析】根据题意,根据对称性画出图形即可解决问题【详解】解:小球运动轨迹是(3,0)(0,3)(1,4)(5,0)(8,3)(7,4)(3,0);小球运动的轨迹如图所示,图中点A、B,点C、D,点E、F关于直线l对称如果小球起始时位于(1,0)处,仍按原来方向击球,小球运动的轨迹如图所示,【点睛】本题考查了利用轴对称设计图案、轨迹等知识,解题的关键是利用对称性解决问题,属于中考常考题型5、见解析【分析】根据轴对称的概念作答,如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形【详解】解:所补画的图形如下所示:【点睛】本题考查利用轴对称设计图案的知识,难度不大,注意掌握轴对称的概念是关键