2021-2022学年浙教版初中数学七年级下册第四章因式分解专项测试试题(含解析).docx
-
资源ID:28176606
资源大小:337.31KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年浙教版初中数学七年级下册第四章因式分解专项测试试题(含解析).docx
章节同步练习2022年·浙教版初中数学 七年级下册知识点习题·定向攻克·含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专项测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或±12、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解3、在下列从左到右的变形中,不是因式分解的是()A.x2xx(x1)B.x2+3x1x(x+3)1C.x2y2(x+y)(xy)D.x2+2x+1(x+1)24、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+y5、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)6、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.7、下列各组式子中,没有公因式的是()A.a2+ab与ab2a2bB.mx+y与x+yC.(a+b)2与abD.5m(xy)与yx8、下列分解因式正确的是()A.B.C.D.9、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:213(1)3,263313,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.926210、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()A.MNB.MNC.MND.不能确定11、下列等式从左到右的变形中,属于因式分解的是()A.B.C.D.12、下列因式分解正确的是( )A.B.C.D.13、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)14、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x315、已知mn2,则m2n24n的值为()A.3B.4C.5D.6二、填空题(10小题,每小题4分,共计40分)1、请从,16,四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_2、已知,则的值为_3、10029929829729629522212_4、因式分解:_5、分解因式:xy3x+y3_6、因式分解:_7、因式分解:_8、若ab0,则a2b2_0(填“”,“”或“”)9、利用平方差公式计算的结果为_10、因式分解:x26x_;(3mn)23m+n_三、解答题(3小题,每小题5分,共计15分)1、阅读下列材料:对于某些二次三项式可以采用“配方法”来分解因式,例如:把x2+6x16分解因式,我们可以这样进行:x2+6x-16=x2+2·x·3+32-32-16(加上32,再减去32)=(x+3)2-52(运用完全平方公式)=(x+3+5)(x+3-5) (运用平方差公式)=(x+8)(x-2)(化简)运用此方法解决下列问题:(1)x210x+(_)(x_)2;(2)把x28x+12分解因式(3)已知:a2+b24a+6b+130,求多项式a26ab+9b2的值2、分解因式:(x22x)212(x22x)+363、分解因式:4x2yy-参考答案-一、单选题1、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】解:,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.2、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.3、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x2xx(x1),是因式分解,故该选项不符合题意; B. x2+3x1x(x+3)1,不是因式分解,故该选项符合题意;C. x2y2(x+y)(xy),是因式分解,故该选项不符合题意; D. x2+2x+1(x+1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.4、A【详解】直接提取公因式y(ab)分解因式即可.【解答】解:x2y(ab)y(ba)x2y(ab)+y(ab)y(ab)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.6、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a2±2ab+b2=(a±b)2是解题的关键.7、B【分析】公因式的定义:多项式中,各项都含有一个公共的因式,因式叫做这个多项式各项的公因式.【详解】解:、因为,所以与是公因式是,故本选项不符合题意;、与没有公因式.故本选项符合题意;、因为,所以与的公因式是,故本选项不符合题意;、因为,所以与的公因式是,故本选项不符合题意;故选:B.【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.8、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24n2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.9、B【分析】根据“和谐数”的概念找出公式:(2k+1)3(2k1)32(12k2+1)(其中k为非负整数),然后再分析计算即可.【详解】解:(2k+1)3(2k1)3(2k+1)(2k1)(2k+1)2+(2k+1)(2k1)+(2k1)22(12 k2+1)(其中 k为非负整数),由2(12k2+1)2019得,k9,k0,1,2,8,9,即得所有不超过2019的“和谐数”,它们的和为13(1)3+(3313)+(5333)+(173153)+(193173)193+16860.故选:B.【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.10、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,a=-2,b=-1,M|-2×(-2+3)|=2,N|-1×(-2+3)|=1MN故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断.11、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A. 是因式分解,故选项A正确; B. 是多项式乘法,故选项B不正确;C. 不是因式分解,故选项C不正确; D. 是单项式乘的逆运算,不是因式分解,故选项D不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.12、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选:C.【点睛】此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a2±2ab+b2=(a±b)2.13、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.14、A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22x1x(x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.15、B【分析】先根据平方差公式,原式可化为,再把已知代入可得,再应用整式的加减法则进行计算可得,代入计算即可得出答案.【详解】解:=把代入上式,原式=,把代入上式,原式=2×2=4.故选:B.【点睛】本题考查了运用平方差公式进行因式分解,解题的关键是熟练掌握平方差公式.二、填空题1、4a2-16=4(a-2)(a+2)【分析】任选两式作差,例如,4a2-16,运用平方差公式因式分解,即可解答.【详解】解:根据平方差公式,得,4a2-16,=(2a)2-42,=(2a-4)(2a+4),=4(a-2)(a+2)故4a2-16=4(a-2)(a+2),故答案为:4a2-16=4(a-2)(a+2).【点睛】本题考查了运用平方差公式因式分解:把一个多项式化为几个整式的积的形式;属于基础题.2、-4【分析】由ab8,得到a8b,代入ab160,得到(b4)20,根据非负数的性质得到结论.【详解】解:ab8,a8b,ab160,(8b)b16b28b16(b4)20,(b4)20,b4,a4,a2b42×(4)4,故答案为:4.【点睛】本题考查了配方法的应用,非负数的性质,正确的理解题意是解题的关键.3、5050【分析】先根据平方差公式进行因式分解,再计算加法,即可求解.【详解】解: 1002-992 + 982-972 + 962-952 +22-12=(100 + 99)(100-99)+(98 + 97)(98-97)+(2+1)(2-1)= 100+ 99+98+ 97+2+1 = 5050.故答案为:5050【点睛】本题主要考查了平方差公式的应用,熟练掌握平方差公式 的特征是解题的关键.4、a(a+1)(a-1)【分析】先找出公因式,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:故答案为:.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.5、(y3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy3x+y3x(y3)+(y3)(y3)(x+1).故答案为:(y3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.6、【分析】先提公因式,再用平方差公式分解即可.【详解】故答案为:【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.7、【分析】根据因式分解的定义,观察该多项式存在公因式,故.【详解】解:.故答案为:.【点睛】本题主要考查用提公因式法进行因式分解,解题的关键是熟练掌握提取公因式法.8、【分析】将a2-b2因式分解为(a+b)(a-b),再讨论正负,和积的正负,得出结果.【详解】解:ab0,a+b0,a-b0,a2-b2=(a+b)(a-b)0.故答案为:.【点睛】本题考查了因式分解,解题的关键是先把整式a2-b2因式分解,再利用ab0得到a-b和a+b的正负,利用负负得正判断大小.9、1010【分析】把分子利用平方差公式分解因式,然后约分化简.【详解】解:原式,故答案为:1010.【点睛】本题考查了利用平方差公式进行因式分解,熟练掌握a2-b2=(+b) (a-b)是解答本题的关键.10、x(x6) (3mn)(3mn1) 【分析】把x26x 中x提取出来即可,给(3mn)23m+n先加括号,然后再运用提取公因式法分解因式即可.【详解】解:x26xx(x6);(3mn)23m+n(3mn)2(3mn)(3mn)(3mn1).故答案为:x(x6),(3mn)(3mn1).【点睛】本题主要考查了提取公因式法分解因式,正确添加括号成为解答本题的关键.三、解答题1、(1)25;5(2)(x-2)(x6);(3)121【分析】(1)利用配方法计算;(2)利用配方法把原式变形,根据平方差公式进行因式分解;(3)利用配方法把原式变形,求出a,b,代入即可【详解】解:(1)x210x+(25)(x5)2;故答案为:25;5(2)原式x28x+1616+12(x4)24(x4+2)(x42)(x-2)(x6);(3)a2+b24a+6b+130a24a+4+b2+6b+90(a2)2+(b+3)2=0,a=2,b=-3;【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.2、(x22x6)2【分析】仔细观察把看做一个整体,可以发现正好是一个完全平方式,直接利用公式法分解因式得出答案.【详解】解:原式(x22x6)2.故答案为:(x22x6)2.【点睛】本题主要考查了因式分解,解题的关键在于能够准确观察出原式是一个完全平方式.3、【分析】先提取公因式,然后利用平方差公式分解因式即可.【详解】解: .【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法和平方差公式分解因式.