2022年人教版九年级数学下册第二十八章-锐角三角函数定向训练试题(名师精选).docx
-
资源ID:28177235
资源大小:700.19KB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版九年级数学下册第二十八章-锐角三角函数定向训练试题(名师精选).docx
人教版九年级数学下册第二十八章-锐角三角函数定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米2、等腰三角形的底边长,周长,则底角的正切值为( )ABCD3、在正方形网格中,ABC在网格中的位置如图,则sinB的值为()ABCD4、如图,在扇形AOB中,AOB90°,以点A为圆心,OA的长为半径作交于点C,若OA2,则阴影部分的面积为()A BCD5、如图,若要测量小河两岸相对的两点A,B的距离,可以在小河边取AB的垂线BP上的一点C,测得BC50米,ACB46°,则小河宽AB为多少米()A50sin46°B50cos46°C50tan46°D50tan44°6、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BHCE于F,交AC于G,交AD于H,下列说法:; 点F是GB的中点;SAHG=SABC其中正确的结论的序号是( )ABCD7、计算的值等于( )AB1C3D8、如图,在RtABC中,ABC90°,BD是AC边上的高,则下列选项中不能表示tanA的是()ABCD9、ABC中,tanA1,cosB,则ABC的形状是()A等腰三角形B直角三角形C等腰直角三角形D锐角三角形10、如图,在ABC中,C=90°,BC=5,AC=12,则tanB等于( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、ABC中,AB4,AC5,ABC的面积为5,那么A的度数是_3、如图,以BC为直径作圆O,A,D为圆周上的点,ADBC,AB=CD=AD=1若点P为BC垂直平分线MN上的一动点,则阴影部分图形的周长最小值为_ 4、如图,已知扇形OAB的半径为6,C是弧AB上的任一点(不与A,B重合),CMOA,垂足为M,CNOB,垂足为N,连接MN,若AOB45°,则MN_5、_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点P从点出发,沿折线向终点C运动,点P在边、边上的运动速度分别为、在点P的运动过程中,过点P作所在直线的垂线,交边或边于点Q,以为一边作矩形,且,与在的同侧设点P的运动时间为t(秒),矩形与重叠部分的面积为(1)求边的长(2)当时, ,当时, (用含t的代数式表示)(3)当点M落在上时,求的值(4)当矩形与重叠部分图形为四边形时,求S与的函数关系式2、计算:3、在ABC中,ABAC,BAC,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为,得到线段PD,连接DB,DC(1)如图1,当60°时,猜想PA和DC的数量关系并说明理由;(2)如图2,当120°时,猜想PA和DC的数量关系并说明理由4、小明周末沿着东西走向的公路徒步游玩,在A处观察到电视塔在北偏东37度的方向上,5分钟后在B处观察到电视塔在北偏西53度的方向上已知电视塔C距离公路AB的距离为300米,求小明的徒步速度(精确到个位,)5、如图,在RtABC中,ACB90°,D为AB的中点,以CD为直径的O分别交AC,BC于点E,F两点,过点F作FGAB于点G(1)求证:FG是O的切线;(2)若AC3,CD2.5,求FG的长-参考答案-一、单选题1、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90°,A65°,AO30m,tan65°,BO30tan65°米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边2、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键3、A【分析】利用勾股定理先求出AB的长度,最后利用正弦值的定义得到,进而得到最终答案【详解】解:如图所示在中,由勾股定理可得: 故选:A【点睛】本题主要是考察了勾股定理和锐角三角函数的定义,掌握锐角三角函数的定义是解题的关键4、B【分析】连接OC、AC,作CDOA于D,可证AOC为等边三角形,得出OAC60°,可求CD=OD×tan60°=,可求SOAC,求出BOC30°,再求出,S扇形OAC,可得阴影部分的面积()【详解】解:连接OC、AC,作CDOA于D,OAOCAC,AOC为等边三角形,OAC60°,CDOA,CDO=90°,OD=AD=,CD=OD×tan60°=,SOAC,BOC30°,S扇形OAC,则阴影部分的面积(),故选:B【点睛】本题考查扇形面积,等边三角形判定与性质,锐角三角函数,掌握扇形面积,等边三角形判定与性质,锐角三角函数是解题关键5、C【分析】根据三角函数的定义求解即可【详解】解:在中,米,故选:C,【点睛】此题考查了解直角三角形的应用,解题的关键是掌握三角函数的定义6、D【分析】先证明ABHBCE,得AH=BE,则,即,再根据平行线分线段成比例定理得:即可判断;设BF=x,CF=2x,则BC=x,计算FG= 即可判断;根据等腰直角三角形得:AC=AB,根据中得:即可判断;根据,可得同高三角形面积的比,然后判断即可【详解】解:四边形ABCD是正方形,AB=BC,HAB=ABC=90°,CEBH,BFC=BCF+CBF=CBF+ABH=90°,BCF=ABH,ABHBCE,AH=BE,E是正方形ABCD边AB的中点,BE=AB,即AH/BC,故正确;设BF=x,CF=2x,则BC=x,AH=x,故不正确;四边形ABCD是正方形,AB=BC,ABC=90°,AC=AB,故正确;,故正确故选D【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键7、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键8、D【分析】根据题意可推出ABC、ADB、BDC均为直角三角形,再在三个直角三角形中分别表示出tanA即可【详解】解:在RtABC中,ABC=90°,BD是AC边上的高,ABC、ADB、BDC均为直角三角形,又A+C=90°,C+DBC=90°,A=DBC,在RtABC中,tanA=,故A选项不符合题意;在RtABD中,tanA=,故B选项不符合题意;在RtBDC中,tanA=tanDBC=,故D选项不符合题意;选项D表示的是sinC,故D选项符合题意;故选D【点睛】本题考查解直角三角形相关知识,熟练掌握锐角三角函数在直角三角形中的应用是解题关键9、C【分析】先根据ABC中,tanA=1,cosB=求出A及B的度数,进而可得出结论【详解】解:ABC中,tanA=1,cosB=,A=45°,B=45°,C=90°,ABC是等腰直角三角形故选:C【点睛】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键10、B【分析】根据锐角三角函数求解即可【详解】解:在RtABC中,C90°,BC5,AC12,所以tanB,故选:B【点睛】本题考查锐角三角函数,掌握正切的定义:正切是指是直角三角形中,某一锐角的对边与另一相邻直角边的比,是正确解答的关键二、填空题1、【解析】【分析】根据特殊的三角函数值解答即可【详解】解:,故答案为:【点睛】本题考查了特殊的三角函数值,熟记特殊的三角函数值是解题是关键2、60°或120°#120°或60°【解析】【分析】首先根据已知条件可以画出相应的图形,根据AC=5,可以求出AC边上的高,再根据A的三角函数值可得A的度数,注意需要分情况讨论【详解】解:当A是锐角时,如图,过点B作BDAC于D,AC5,ABC的面积为5,BD5×2÷52,在中,sinA,A60°当A是钝角时,如图,过点B作BDAC,交CA的延长线于D,AC5,ABC的面积为5,BD5×2÷52,在RtABD中,sinBADsinA,BAD60°BAC180°60°120°故答案为60°或120°【点睛】本题考查解直角三角形,解题的关键是画出合适的图形,作出相应的辅助线3、【解析】【分析】连接BP,BD,OD,根据线段垂直平分线的性质定理,可得BP=CP,从而得到当点B、P、D三点共线时,DP+CP的值最小,最小值为BD的长,再由直径所对的圆周角为直角,可得BDC=90°,再由 ,可得COD= =60°,从而得到 ,进而得到,即可求解【详解】解:如图,连接BP,BD,OD,MN为BC的垂直平分线,BP=CP,DP+CP=DP+BPBD,即当点B、P、D三点共线时,DP+CP的值最小,最小值为BD的长,BC为直径,BDC=90°,AB=CD=AD, ,COD= =60°, , ,DP+CP的最小值为 ,阴影部分图形的周长最小值为 故答案为:【点睛】本题主要考查了圆周角定理,线段垂直平分线的性质定理,特殊角锐角三角函数,熟练掌握圆周角定理,线段垂直平分线的性质定理,特殊角锐角三角函数是解题的关键4、3【解析】【分析】根据题意作辅助线,构建三角形相似,先证明DMCDNO,得DMDC=DNDO,由夹角是公共角得:DMNDCO,得MNCO=DNDO,根据AOB45°及特殊的三角函数值,代入比例式可得结论【详解】解:连接OC,延长OA、NC交于D,则OC6,CMOA,CNOB,DMCDNO90°,DD,DMCDNO,DMDN=DCDO,即DMDC=DNDO,DD,DMNDCO,MNCO=DNDO,CNOB,AOB45°,sinAOBDNOD=22,MNOC=22,OC6,MN6=22,MN.故答案为:【点睛】本题考查的是三角形相似的性质和判定,特殊的三角函数值及三角函数的定义,根据题意作出辅助线,构造出直角三角形是解答此题的关键5、#0.75【解析】【详解】解:,故答案为:【点睛】本题考查了三角函数的计算,解题关键是熟记特殊角三角函数值三、解答题1、(1);(2);(3)或;(4)【解析】【分析】(1)利用勾股定理直接计算即可;(2)先求解再用含的代数式表示 再利用三角函数建立方程求解两种情况下的即可;(3)分两种情况讨论:如图,当在上,落在上,如图,当在上,落在上,则重合,再利用矩形的性质结合三角函数可得结论;(4)如图,当第一次落在上,即时,此时重叠部分的面积为四边形, 当时,重叠部分为四边形,如图, 当时,此时重叠部分的面积为四边形,如图,当第2次落在上时, 当时,此时重叠部分的面积为四边形,再利用图形的性质列面积函数关系式即可.【详解】解:(1) , (2)当时,在上, 而四边形为矩形, 当时,在上,如图,此时, , , 故答案为: (3)如图,当在上,落在上,此时 解得: 如图,当在上,落在上,则重合, 同理可得: 解得: (4)当第一次落在上,即时,此时重叠部分的面积为四边形,如图,此时 当落在上时,如图,同理可得: 解得: 当时,重叠部分为四边形,如图,同理可得: 如图,当落在上时,同理可得: 而 解得: 当时,此时重叠部分的面积为四边形,如图,此时 当第2次落在上时, 当时,此时重叠部分的面积为四边形,如图,同理可得: 综上:【点睛】本题考查的是平行四边形的性质,矩形的判定与性质,列面积函数关系式,锐角三角函数的应用,清晰的分类讨论是解题的关键.2、【解析】【分析】直接利用特殊角的三角函数值代入,进而利用二次根式的乘法运算法则计算得出答案【详解】解:原式【点睛】本题主要考查了特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键3、(1),理由见解析;(2),理由见解析【解析】【分析】(1)根据已知条件证明即得到;(2)过点作于,过点作,进而可得,同理可得证明进而证明,根据相似三角形的性质列出比例式即可求得【详解】(1),理由如下,是等边三角形,线段绕点P逆时针旋转后得到线段,是等边三角形,;(2)理由如下,如图,过点作于,过点作,即,【点睛】本题考查了全等三角形的性质与判定,特殊角的三角函数值,等腰三角形的性质,相似三角形的性质与判定,旋转的性质,综合运用以上知识是解题的关键4、126米/分钟【解析】【分析】过作于,则米,由解直角三角形求出AD和BD的长度,则求出AB的长度,即可求出小明的速度【详解】解:过作于,则米,同理:速度:631÷5126(米/分钟)【点睛】本题考查了解直角三角形的应用,以及解直角三角形,解题的关键是正确求出AD和BD的长度5、(1)证明见解析;(2)【解析】【分析】(1)如图,连接OF,根据直角三角形的性质得到CDBD,得到DBCDCB,根据等腰三角形的性质得到OFCOFC,得到OFCDBC,推出OFG90°,即可求解;(2)连接DF,根据勾股定理得到BC,根据圆周角定理得出DFC90°,根据三角形函数的定义即可得出结论【详解】(1)证明:如图,连接OF,ACB90°,D为AB的中点,CDBD,DBCOCF,OFOC,OFCOCF,OFCDBC,OFDB,OFG+DGF180°,FGAB,DGF90°,OFG90°,OF为半径,FG是O的切线;(2)解:如图,连接DF,CD2.5,AB2CD5,BC,CD为O的直径,DFC90°,FDBC,DBDC,BFBC2,sinABC,即,FG【点睛】本题主要考查了切线的判定与性质,等腰三角形的性质,勾股定理,正弦的定义,准确分析计算是解题的关键