必考点解析京改版七年级数学下册第八章因式分解综合训练试题.docx
-
资源ID:28178043
资源大小:243.25KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
必考点解析京改版七年级数学下册第八章因式分解综合训练试题.docx
京改版七年级数学下册第八章因式分解综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式中能用平方差公式分解因式的是()Aa2b2Bx2+(y)2C(x)2+(y)2Dm2+12、下列变形,属因式分解的是( )ABCD3、下列从左到右的变形,是因式分解的是( )A(x4)(x4)x216Bx2x6(x3)(x2)Cx21x(x)Da2bab2ab(ab)4、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )ABCD5、下列多项式中能用平方差公式分解因式的是( )ABCD6、把多项式a29a分解因式,结果正确的是()Aa(a+3)(a3)Ba(a9)C(a3)2D(a+3)(a3)7、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2ABCD8、下列各式中,由左向右的变形是分解因式的是( )ABCD9、下列等式中,从左到右的变形是因式分解的是( )Aa(a-3)=a2-3aB(a+3)2=a2+6a+9C6a2+1=a2(6+)Da2-9=(a+3)(a-3)10、下列各式中,从左到右的变形是因式分解的是()A2a22a+12a(a1)+1B(x+y)(xy)x2y2Cx24xy+4y2(x2y)2Dx2+1x(x+)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、分解因式:_3、因式分解:_4、分解因式:_5、把多项式分解因式的结果是_三、解答题(5小题,每小题10分,共计50分)1、(1)运用乘法公式计算:;(2)分解因式:2、因式分解(1)(2)(x1)(x3)83、阅读与思考:材料:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是小影同学用换元法对多项式进行因式分解的过程解:设,原式第一步第二步第三步第四步(1)小影同学第二步到第三步运用了因式分解的_填写选项A.提取公因式B.平方差公式C.两数和的平方公式D.两数差的平方公式(2)小影同学因式分解的结果是否彻底?_填彻底或不彻底;若不彻底,请你帮她直接写出因式分解的最后结果_(3)请你模仿以上方法尝试对多项式进行因式分解4、分解因式(1)4x2-16;(2)16-m2;(3) ; (4)9a2(xy)+4b2(yx)5、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(b是正整数,且ab),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-13-3,所以3×3是9的最优分解,所以M(9)=1(1)求M(8);M(24);M(c+1)2的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1xy9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值-参考答案-一、单选题1、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键2、A【解析】【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可【详解】解:A、是因式分解,故此选项符合题意;B、分解错误,故此选项不符合题意;C、右边不是几个整式的积的形式,故此选项不符合题意;D、分解错误,故此选项不符合题意;故选:A【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键3、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键4、A【解析】【分析】左图中阴影部分的面积a2b2,右图中矩形面积(ab)(ab),根据二者面积相等,即可解答【详解】解:由题意可得:a2b2(ab)(ab)故选:A【点睛】此题主要考查了乘法的平方差公式,属于基础题型5、A【解析】【分析】利用平方差公式逐项进行判断,即可求解【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键6、B【解析】【分析】用提公因式法,提取公因式即可求解【详解】解:a29aa(a9)故选:B【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止7、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2有因式x1的是故选:D【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即8、B【解析】【分析】判断一个式子是否是因式分解的条件是等式的左边是一个多项式,等式的右边是几个整式的积,左、右两边相等,根据以上条件进行判断即可【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键9、D【解析】【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式10、C【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A从左到右的变形不属于因式分解,故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式二、填空题1、【解析】【分析】先提取公因式,再利用完全平方公式进行因式分解【详解】解:,故答案是:【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及完全平方公式2、#()(2- x)(2+x)【解析】【分析】观察式子可发现此题为两个数的平方差,所以利用平方差公式分解即可【详解】解:故答案为:【点睛】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反3、【解析】【分析】直接提取公因式整理即可【详解】解:,故答案是:【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式4、【解析】【分析】会利用公式进行因式分解,对另两项提取公因式,再提取即可因式分解【详解】解:,故答案为:【点睛】本题主要考查了提取公因式法以及公式法分解因式,解题的关键是正确运用公式法分解因式5、【解析】【分析】先提取4m,再根据平方差公式即可因式分解【详解】=故答案为:【点睛】此题主要考查因式分解,解题的关键是熟知平方差公式的特点三、解答题1、(1);(2)【解析】【分析】(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可【详解】解:(1)=;(2)=【点睛】本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键2、(1)x2(a2-2y)2;(2)(x-5)(x+1)【解析】【分析】(1)先提取x2,再根据完全平方公式即可求解;(2)先化简,再根据十字相乘法即可求解【详解】解:(1)=x2(a4-4a2y+4y2)=x2(a2-2y)2(2)(x1)(x3)8=x2-4x+3-8=x2-4x-5=(x-5)(x+1)【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法3、(1) ;(2)不彻底,;(3)【解析】【分析】(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,即可得出选项;(2)根据完全平方公式中的两数差的平方公式可继续进行因式分解;(3)根据材料,用换元法进行分解因式即可【详解】解:(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,故选:C;(2)小影同学因式分解的结果不彻底,原式 ,故答案为:不彻底,;(3)设,原式,【点睛】本题考查了因式分解换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键4、(1);(2);(3);(4)【解析】【分析】(1)(4)先提取公因式,再利用平方差公式继续分解即可;(2)(3)利用平方差公式分解即可【详解】解:(1)4x2-16=4(x2-4)=4(x+2)(x-2);(2)16-m2=(4+)( 4-);(3);(4)9a2(xy)+4b2(yx)=9a2(xy)-4b2(xy)=(xy)(9a2-4b2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键5、(1);1;(2);【解析】【分析】(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)=,M(24)=,M(c+1)2= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1xy9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)=,M(33)=,所以所有“吉祥数”中M(d)的最大值为【详解】解:(1)由题意得,M(8)=;M(24)=;M(c+1)2=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,x,y都是自然数,且1xy9,满足条件的“吉祥数”有15、24、33M(15)=,M(24)=,M(33)=,所有“吉祥数”中M(d)的最大值为【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键