强化训练京改版九年级数学下册第二十四章-投影、视图与展开图专题练习试卷(精选含答案).docx
-
资源ID:28178334
资源大小:548.45KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
强化训练京改版九年级数学下册第二十四章-投影、视图与展开图专题练习试卷(精选含答案).docx
九年级数学下册第二十四章 投影、视图与展开图专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是从不同方向看某个立体图形所得到的平面图形,则这个立体图形是()A三棱柱B三棱锥C圆柱D圆锥2、如图,几何体的左视图是( )ABCD3、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是()ABCD4、下列说法错误的是()A六棱柱有六个侧面,侧面都是长方形B球体的三种视图均为同样大小的圆C棱锥都是由平面围成的D一个直角三角形绕其直角边旋转一周得到的几何体是圆锥5、下列图形经过折叠不能围成棱柱的是( )ABCD6、如图是一根空心方管,它的主视图是()ABCD7、下图是一个几何体的展开图,该几何体是( )A圆柱体B四棱柱C三棱锥D圆锥体8、下图中是正方体展开图的是( )ABCD9、下列物体的左视图是圆的为( )A足球B 水杯C 圣诞帽D 鱼缸10、如图是一个正方体的平面展开图,标注了字母m的是正方体的前面,如果正方体的左面与右面标注的式子相等,前面与后面标注的数字互为相反数,则m的值为()A3B3C2D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是给出的几何体三个方向看到的形状,则这个几何体最多由_个小正方体组成2、如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,那么这个棱柱的侧面积为_3、图2是图1中长方体的三视图,用S表示面积,S主x2+2x,S左x2+x,则S俯_4、一个几何体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个几何体的小正方体的个数为_个5、一个“粮仓”的三视图如图所示(单位:),则它的侧面积是_三、解答题(5小题,每小题10分,共计50分)1、如图所示是由6个大小相同的小立方体搭成的几何体,请你画出它的主视图与左视图2、(1)已知图1是由大小相同的小立方块搭成的几何体,请在图2的方格中分别画出从左面和从上面看到的该几何体的形状图(请依照从正面看的范例画图); (2)若要用大小相同的小立方块搭一个几何体,使得它从左面和从上面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体至少需要 个小立方块3、一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如左图所示,小正方形中的数字表示在该位置的小正方块儿的个数(1)请在右边网格中画出从正面和左面看到的几何体的形状图(2)已知每个小正方块儿的棱长为2cm,求出这个几何体的表面积4、补全如图立体图形的三视图5、如图,是由一些大小相同的小正方体组合成的简单几何体根据要求完成下列题目请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影)-参考答案-一、单选题1、A【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:由主视图和左视图为长方形判断出是柱体,由俯视图是三角形可判断出这个几何体应该是三棱柱故选:A【点睛】本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为三角形就是三棱柱2、C【分析】找到从左面看所得到的图形,比较即可【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是: 故选C【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图3、B【分析】根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形【详解】解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,故选B【点睛】本题考查从不同方向看几何体做此类题,最好是逐列分析每一列中正方形的个数然后组合即可4、A【分析】根据棱柱,球体,棱锥,圆锥的形状进行判断即可【详解】解:A、直六棱柱有六个侧面,侧面都是长方形,原说法错误,符合题意;B、球体的三种视图均为同样大小的圆,原说法正确,不符合题意;C、棱锥都是由平面围成的,原说法正确,不符合题意;D、一个直角三角形绕其直角边旋转一周得到的几何体是圆锥,原说法正确,不符合题意;故选:A【点睛】本题考查了简单几何体,解题的关键是了解一些几何体的形状,难度不大5、D【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可【详解】解:A可以围成四棱柱,B可以围成三棱柱,C可以围成五棱柱,D选项侧面上多出一个长方形,故不能围成一个三棱柱故选:D【点睛】本题考查立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键6、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,是内外两个正方形,故选A【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线7、D【分析】根据侧面展开图为一个扇形,底面是一个圆,所以该几何体是圆锥【详解】解:由题意,侧面展开图为一个扇形,底面是一个圆,该几何体是圆锥体;故选:D【点睛】本题考查了几何体的侧面展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键8、D【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答【详解】解:A、B、C中的图形折叠时有一个面重合,故不能折叠成正方体,D中的图形能折叠成正方体;故选D【点睛】本题考查了正方体的表面展开图,理正方体的表面展开图的模型是解题的关键正方体的表面展开图用口诀:一线不过四,田凹应弃之,相间、Z端是对面,间二、拐角邻面知9、A【分析】根据左视图是指从物体左面向右面正投影得到的投影图,即可求解【详解】解:A、左视图为圆,故本选项符合题意;B、左视图为长方形,故本选项不符合题意;C、左视图为三角形,故本选项不符合题意;D、左视图为长方形,故本选项不符合题意;故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键10、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“m”与“x”是相对面,“2”与“3”是相对面,“4”与“2x”是相对面,解正方体的左面与右面标注的式子相等,42x,解得x2;标注了m字母的是正方体的前面,左面与右面标注的式子相等,前面与后面标注的数字互为相反数,m2故选:D【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题二、填空题1、10【分析】从俯视图可知第一层有5个小正方体,从正视图和左视图可知第二层最多有5个,据此即可求得答案【详解】由俯视图可知第一层有5个小正方体,由已知的正视图和左视图可知,第2层最多有5个小正方体,故该几何体最多有5+5=10个故答案为:10【点睛】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图掌握以上知识是解题的关键2、#【分析】首先根据题意求得等边三角形的边长为1,高为,继而可求得矩形的高,则可求得矩形的面积即可【详解】解:将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,的边长为1,则高为,矩形的面积为:,故答案为:【点睛】此题考查了正方形的性质、矩形的性质、等边三角形的性质以及正三棱柱的知识此题综合性较强,难度适中,考查了学生的空间想象能力,注意数形结合思想的应用3、x2+4x+3【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案【详解】S主=x2+3x=x(x+3),S左=x2+x=x(x+1),俯视图的长为x+3,宽为x+1,则俯视图的面积S俯=(x+3)(x+1)=x2+4x+3,故答案为:x2+4x+3【点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高4、5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数【详解】解:由俯视图易得最底层小正方体的个数为3,由主视图可知第二层的右侧有2个正方体,从左视图可知只有一行二层,那么共有3+2=5个正方体故答案为:5【点睛】本题考查了由三视图确定几何体的形状,同时考查学生空间想象能力及对立体图形的认识5、【分析】根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算侧面积即可【详解】解:由三视图可知,这个几何体上部分是一个圆锥,下部分是一个圆柱,由图中数据可知,圆锥的高为7-4=3m,圆锥的底面圆的直径为6m,圆柱的高为4m,底面圆直径为6m,圆锥的母线长m ,圆柱部分的侧面积,圆锥的侧面积,这个几何体的侧面积,故答案为:【点睛】本题主要考查了简单组合体的三视图,圆锥和圆柱的侧面积计算,解题的关键在于能够根据几何体的三视图确定几何体为圆锥和圆柱的结合体三、解答题1、主视图与左视图见详解【分析】根据图示确定几何体的三视图即可得到答案,从正面看有三层,从上往下个数分别为1,1,3个,从左边看由2列,从左往右分别为3,1个小正方形,据此作出主视图和左视图即可【详解】解:由几何体可知,该几何体的主视图和左视图依次为:【点睛】本题考查了简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键2、(1)见解析;(2)6【分析】(1)从上面看得到从左往右3列正方形的个数依次为2,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可【详解】解:(1)如图所示:(2)从左面和从上面看到的形状图与图2方格中所画的形状图相同,在俯视图的相应位置所摆放的小立方体的个数如图所示:或因此最少需要6个小立方体故答案为6【点睛】本题考查给出立体图形画三视图,根据画出的左视图与俯视图确定最少正方体,掌握三视图定义,利用数形结合思想是解题关键3、(1)见解析;(2)136cm2【分析】(1)直接利用三视图的观察角度分别从正面和左面得出视图即可;(2)根据正方体的个数得出表面积;【详解】解:(1)如图所示:(2),答:表面积为【点睛】考查几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字,左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字4、见解析【分析】根据简单几何体的三视图的画法,画出相应的图形即可,注意看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示【详解】解:补全这个几何体的三视图如下:【点睛】本题考查了简单几何体的三视图,理解视图的意义,掌握简单几何体的三视图的画法是正确解答的前提5、见解析【分析】直接利用左视图以及俯视图的观察角度分析得出答案;【详解】解:它的左视图和俯视图,如下图:【点睛】本题主要考查了简单几何体的三视图,正确注意观察角度是解题关键,主视图、俯视图、左视图分别是从物体的正面,上面、左面看得到的图形