2022年最新京改版九年级数学下册第二十五章-概率的求法与应用难点解析试题(无超纲).docx
-
资源ID:28178547
资源大小:243.89KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新京改版九年级数学下册第二十五章-概率的求法与应用难点解析试题(无超纲).docx
九年级数学下册第二十五章 概率的求法与应用难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( )ABCD2、一个不透明的口袋中,装有红球5个,黑球4个,白球11个,这些球除颜色不同外没有任何区别,现从中任意摸出一个球,恰好是黑球的概率为( )ABCD3、盒子中装有形状、大小完全相同的3个小球,球上分别标有数字1,1,2,从中随机取出一个,其上的数字记为k1放回后再取一次,其上的数记为k2,则一次函数yk1x+b与第一象限内y的增减性一致的概率为()ABCD4、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C由此估计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株5、两次连续掷一枚质地均匀的骰子,点数都是2朝上的概率是()ABCD6、如图,有6张扑克牌,从中随机抽取一张,点数小于7的可能性大小是( )A3BC1D7、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )ABCD8、某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( ) 累计抽测的学生数n1002003004005006007008009001000体质健康合格的学生数与n的比值0.850.90.930. 910.890.90.910.910.920.92A0.92B0.905C0.03D0.99、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD10、小明的妈妈让他在无法看到袋子里糖果的情形下从中任抽一颗袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同如果袋中所有糖果数量统计如图所示,那么小明抽到红色糖果的可能性为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无差别,从中随机摸出一个小球,则摸到的是红球的概率为_2、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为_(结果保留)3、在一个不透明的布袋中,黄色、红色的乒乓球共10个,这些球除颜色外其他都相同小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是_个4、在如图所示的电路图中,当随机闭合开关K1、K2、K3中的两个时,能够让灯泡发光的概率为_5、从分别写有数字、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是_三、解答题(5小题,每小题10分,共计50分)1、某校计划在暑假第二周的星期一至星期五开展社会实践活动,要求每位学生选择两天参加活动(1)甲同学随机选择两天,其中一天是星期五的概率是多少?(2)乙同学随机选择连续的两天,其中一天是星期五的概率是多少?2、经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口请用“树形图”或“列表法”求这两辆汽车都向左转的概率3、一个不透明的口袋中有四个分别标号为1,2,3,4的完全相同的小球,从中随机摸取两个小球(1)请列举出所有可能结果;(2)求取出的两个小球标号和等于5的概率4、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习用列表法或画树状图法求:(1)甲、乙都选择(窗花剪纸)课程的概率;(2)甲、乙选择同一门课程的概率5、甲、乙两名同学分别从武汉日夜、大红包、吉祥如意三部电影中随机选择一部观看(1)甲同学选择武汉日夜的概率是 ;(2)求甲、乙两名同学恰好选择同一部电影的概率(请用“画树状图”或“列表”等方法写出分析过程)-参考答案-一、单选题1、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案【详解】解:有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;故选:B【点睛】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比2、A【分析】根据题意可得共有20个小球,即可得出任意摸出一个小球,共有20种等可能结果,其中恰好是黑球的有4种结果,即可求出概率【详解】解:由题意得,袋中装有红球5个,黑球4个,白球11个,任意摸出一个球,恰好是黑球的概率是故选:A【点睛】本题考查了求概率的方法,熟知概率公式是解题关键3、B【分析】分别计算所有情况数及满足条件的情况数,代入概率计算公式,可得答案【详解】盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为,放回后再取一次,其上的数记为,则共有9种情况,分别为:(-1,-1),(-1,1),(-1,2),(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),一次函数yk1x+b与第一象限内y的增减性一致的有:(-1,1),(-1,2),一次函数yk1x+b与第一象限内y的增减性一致的概率为故选B【点睛】此题考查概率计算公式,判断一次函数与反比例函数的增减性,解题关键在于列出所有可能出现的情况4、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键5、A【分析】列表得出所有等可能的情况数,找出两个骰子点数都是2的情况数,即可求出所求的概率【详解】解:列表如下: 1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)所有等可能的情况有36种,其中点数都是2的情况只有(2,2),1种,则P=故选:A【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比6、B【分析】先用列举法得到所有的等可能的结果数,然后得到小于7的结果数,由此利用概率公式求解即可【详解】解:由题意得:从这6张扑克牌,从中随机抽取一张,点数的可能为:3、4、5、7、8、10,一共6种结果,其中点数小于7的有3、4、5三种结果,P点数小于7 故选B【点睛】本题主要考查了用列举法求解概率,解题的关键在于能够熟练掌握用列举法求解概率7、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案【详解】解:在不透明的布袋中装有1个白球,2个红球,3个黑球,从袋中任意摸出一个球,摸出的球是红球的概率是:故选:B【点睛】此题考查了概率公式的应用注意概率=所求情况数与总情况数之比8、A【分析】根据频数估计概率可直接进行求解【详解】解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;故选A【点睛】本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键9、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答10、D【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,然后根据概率公式求解【详解】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,所以小明抽到红色糖果的概率故选:D【点睛】本题考查了概率公式:随机事件A的概率P(A)事件A可能出现的结果数除以所有可能出现的结果数也考查了条形统计图二、填空题1、【分析】将红球的个数除以球的总个数即可得【详解】解:根据题意,摸到的不是红球的概率为,答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数2、#【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解【详解】解:根据题意得:飞镖落在阴影区域内的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键3、4【分析】设出黄球的个数,根据黄球的频率求出黄球的个数即可解答【详解】设黄球的个数为x,共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,解得:,布袋中红色球的个数很可能是(个)故答案为:4【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程4、【分析】根据题意画出树状图,由树状图求得所有可能的结果与能够让灯泡发光的情况,然后利用概率公式求解即可求得答案【详解】解:设K1、K2、K3中分别用1、2、3表示,画树状图得:共有6种等可能的结果,能够让灯泡发光的有4种结果,能够让灯泡发光的概率为:,故答案为:【点睛】本题主要考查了概率问题,根据题意画出树状图求得所有可能的结果与能够让灯泡发光的情况是关键5、【分析】让绝对值小于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率【详解】解:数的总个数有9个,绝对值小于2的数有1,0,1共3个,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是,故答案为:【点睛】本题考查概率的求法;得到绝对值小于2的数的个数是解决本题的易错点三、解答题1、(1);(2)【分析】(1)由树状图得出共有20个等可能的结果,其中有一天是星期二的结果有8个,由概率公式即可得出结果;(2)乙同学随机选择连续的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五);其中有一天是星期五的结果有1个,由概率公式即可得出结果【详解】解:(1)根据题意画图如下:由树状图可知,共有20个等可能的结果,甲同学随机选择两天,其中有一天是星期五的结果有8个,甲同学随机选择两天,其中有一天是星期五的概率为;(2)乙同学随机选择连续的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五),其中有一天是星期五的结果有1个,即(星期四,星期五),乙同学随机选择连续的两天,其中有一天是星期五的概率是【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比2、【分析】先画出树状图,然后找到所有的等可能性的结果数,再找到两辆汽车都向左转的结果数,最后根据概率公式求解即可【详解】解:画树状图如下所示:由树状图可知,一共有9种等可能性的结果数,其中两辆汽车都向左转的结果数为1,P这两辆汽车都向左转的概率【点睛】本题主要考查了用树状图法或列表法求解概率,解题的关键在于能够正确画出树状图3、(1)见详解;(2).【分析】(1)根据题意通过列出相应的表格,即可得出所有可能结果;(2)由题意利用取出的两个小球标号和等于5的结果数除以所有可能结果数即可得出答案.【详解】解:(1)由题意列表得:12341-(2,1)(3,1)(4,1)2(1,2)-(3,2)(4,2)3(1,3)(2,3)-(4,3)4(1,4)(2,4)(3,4)-所有可能的结果有12种;(2)由(1)表格可知取出的两个小球标号和等于5的结果有(1,4)、(2,3)、(3,2)、(4,1)共4种,而所有可能的结果有12种,所以取出的两个小球标号和等于5的概率.【点睛】本题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比4、(1) ;(2)【分析】(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.【详解】解:(1)由题意列表,ABCDAA,AA,BA,CA,DBB,AB,BB,CB,DCC,AC,BC,CC,DDD,AD,BD,CD,D由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,所以甲、乙都选择(窗花剪纸)课程的概率为.(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,所以甲、乙选择同一门课程的概率为.【点睛】本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键用到的知识点为:概率=所求情况数与总情况数之比5、(1);(2)树状图见解析,【分析】(1)根据题意直接利用概率公式进行求解即可;(2)由题意画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可【详解】解:(1)甲同学选择武汉日夜的概率是,故答案为:;(2)武汉日夜、大红包、吉祥如意三部电影分别用A、B、C表示,列树状图如下:共有9种等可能的情况数,其中甲、乙两名同学恰好选择同一部电影的有3种,则甲、乙两名同学恰好选择同一部电影的概率是【点睛】本题考查列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比,注意此题是放回试验还是不放回试验是解题的关键