2022年最新强化训练京改版八年级数学下册第十六章一元二次方程专项测评试卷(无超纲).docx
-
资源ID:28179054
资源大小:165.37KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练京改版八年级数学下册第十六章一元二次方程专项测评试卷(无超纲).docx
京改版八年级数学下册第十六章一元二次方程专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程中一定是一元二次方程的是( )Ax240Bax2bxc0Cx2y10Dx102、已知是一元二次方程的一个根,则代数式的值为( )A2020B2021C2022D20233、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为( )ABCD4、下列事件为必然事件的是()A抛掷一枚硬币,正面向上B在一个装有5只红球的袋子中摸出一个白球C方程x22x0有两个不相等的实数根D如果|a|b|,那么ab5、一个三角形两边的长分别等于一元二次方程的两个实数根,则这个三角形的第三条边不可能为( )A7B11C15D196、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )ABCD7、用配方法解方程x2+2x=1,变形后的结果正确的是( )A(x+1)2=-1B(x+1)2=0C(x+1)2=1D(x+1)2=28、方程的解是( )A6B0C0或6D-6或09、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A128(1 - x2)= 88B88(1 + x)2 = 128C128(1 - 2x)= 88D128(1 - x)2 = 8810、目前以5G等为代表的战略性新兴产业蓬勃发展某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到3.92万户,设全市5G用户数年平均增长率为x,则x值为()A20%B30%C40%D50%第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,设该厂四、五月份的月平均增长率为x,则可列方程为_2、若(m1)xm(m2) 12mx10是关于x的一元二次方程,则m的值是_3、 “降次”是解一元二次方程的基本思想,用这种思想解高次方程x3x0,它的解是_4、将化为一般形式为_5、阅读下列材料:早在公元1世纪左右,我国著名的数学典籍九章算术中就已经对一元二次方程进行了研究:在“勾股”章中,根据实际问题列出方程x2 + 34x - 71000 = 0,给出该方程的正根为x = 250,并简略指出解该方程的方法:开方除之其后,受此启发,有数学家研究了利用几何图形求解该方程的方法,对于丰富我国古代有关一元二次方程的研究具有重要的价值用该方法求解的过程如下(如图):第一步:构造已知小正方形边长为x,将其边长增加17,得到大正方形第二步:推理根据图形中面积之间的关系,可得(x+17)2 = x2 + 2 × 17x + 172由原方程x2 + 34x - 71000 = 0,得x2 + 34x = 71000所以(x+17)2 = 71000 + 172所以(x+17)2 = 71289直接开方可得正根x = 250依照上述解法,要解方程x2 + bx + c = 0(b > 0),请写出第一步“构造”的具体内容与第二步中“(x+17)2 = 71000 + 172”相应的等式是 _ 三、解答题(5小题,每小题10分,共计50分)1、如图,在一块长、宽的矩形地面内,修筑一横两竖三条道路,横、竖道路的宽度相同,余下的地面铺草坪,要使草坪面积达到,求道路的宽2、解方程:(1)x26x40;(2)3x(x+1)3x+33、宜宾市某楼盘准备以每平方米9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米7290元的均价开盘销售(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子开发商还给予以下两种优惠方案以供选择:打9.8折销售;不打折,送两年物业管理费物业管理费是每平方米每月1.5元请问哪种方案更优惠?4、为了让我们的小朋友们有更好的学习环境,我校2020年投资110万元改造硬件设施,计划以后每年以相同的增长率进行投资,到2022年投资额将达到185.9万元(1)求我校改造硬件设施投资额的年平均增长率;(2)从2020年到2022年,这三年我校将总共投资多少万元?5、已知关于x的方程(m1)x2+2mx+m+30有两个实数根,请求出m的最大整数值-参考答案-一、单选题1、A【分析】利用一元二次方程定义进行解答即可【详解】解:A、是一元二次方程,故此选项符合题意;B、当a=0时,不是一元二次方程,故此选项不合题意;C、含有两个未知数,不是一元二次方程,故此选项不合题意;D、未知数次数为1,不是一元二次方程,故此选项不合题意;故选:A【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”2、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可【详解】解:把代入一元二次方程得,故选:B【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键3、C【分析】根据等量关系第10月的营业额×(1+x)2=第12月的营业额列方程即可【详解】解:根据题意,得:,故选:C【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键4、C【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,叫做必然事件,进行逐一判断即可【详解】解:A、抛掷一枚硬币,可能正面向上,也有可能反面向上,不是必然事件,不符合题意;B、在一个装有5只红球的袋子中摸出一个白球是不可能发生的,不是必然事件,不符合题意;C、,方程x22x0有两个不相等的实数根,是必然事件,符合题意;D、如果|a|b|,那么ab或a=-b,不是必然事件,不符合题意;故选C【点睛】本题主要考查了必然事件的定义,熟知定义是解题的关键5、D【分析】先根据一元二次方程的解法得到这个三角形的两边长,然后再利用三角形三边关系可排除选项【详解】解:,解得:,这个三角形的两边的长为6和11,第三边长x的范围为5x17;故选D【点睛】本题主要考查一元二次方程的解法及三角形三边关系,熟练掌握一元二次方程的解法及三角形三边关系是解题的关键6、C【分析】设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可【详解】解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,由题意得:,故选C【点睛】本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键7、D【分析】方程两边同时加上一次项系数一半的平方即可得到答案【详解】解:x2+2x=1,x2+2x+1=1+1,(x+1)2=2,故选D【点睛】本题考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方8、C【分析】根据一元二次方程的解法可直接进行求解【详解】解:,解得:;故选C【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键9、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解【详解】解:依题意得:128(1-x)2=88故选:D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键10、C【分析】先用含x的代数式表示出2021年底5G用户的数量, 然后根据2021年底5G用户数为3.92万户列出关于x的方程,解方程即得答案【详解】解:设全市5G用户数年平均增长率为x,根据题意,得: ,整理得:,解得:x1=0.4=40%,x2= 2.4(不合题意,舍去)故选:C【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键二、填空题1、【分析】该厂四、五月份的月平均增长率为x,根据增长率公式即可得出五月份的产量是,据此列方程即可【详解】该厂四、五月份的月平均增长率为x,五月份的产量是,故答案为:【点睛】本题考查一元二次方程的应用,解题的关键是正确列出一元二次方程原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到,再经过第二次调整就是,增长用“+”,下降用“”2、3【分析】本题根据一元二次方程的定义求解一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0由这两个条件得到相应的关系式,再求解即可【详解】解:是关于x的一元二次方程,即,解得m3故答案为:3【点睛】本题主要考查了一元二次方程的定义,解一元二次方程,解题的关键在于熟知一元二次方程的定义3、【分析】先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可.【详解】解: 则或或 解得: 故答案为:【点睛】本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.4、【分析】移项,将方程右边化为0【详解】解:化为一般形式为故答案为:【点睛】本题考查一元二次方程的定义,属于基础题,一元二次方程的一般式:5、(x+b2)2=-c+(b2)2【分析】根据题中例题及配方法求解即可得【详解】解:第一步:“构造”内容为:已知小正方形边长为x,将其边长增加b2,得到大正方形;第二步:“推理”(x+b2)2=x2+bx+(b2)2,x2+bx+c=0,得x2+bx=-c,(x+b2)2=-c+(b2)2,故答案为:(x+b2)2=-c+(b2)2【点睛】题目主要考查利用配方法解一元二次方程的应用,理解题中例题及配方法是解题关键三、解答题1、道路的宽为2m【分析】设道路的宽为xm,根据图形可以把草坪面积看做是一个长为m,宽为m的长方形面积,由此建立方程求解即可【详解】解:设道路的宽为xm,由题意得:,解得或(舍去),道路的宽为2m【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够根据题意列出方程求解2、(1)x1=+3,x2=-+3(2)x1=-1,x2=1【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解【详解】(1)x26x40x26x+913(x-3)213x-3=±x1=+3,x2=-+3(2)3x(x+1)3x+33x(x+1)-3(x+1)=03(x+1)(x-1)=0x+1=0或x-1=0x1=-1,x2=1【点睛】此题主要考查解一元二次方程,解题的关键是熟知配方法与因式分解法的运用3、(1)10%;(2)方案更优惠,理由见解析【分析】(1)设平均每次下调的百分率为x,利用预订每平方米销售价格×(1-x)2=开盘每平方米销售价格列方程解答即可;(2)分别解出两种方案的房款,再作比较即可【详解】解:(1)设平均每次下调的百分率为x,根据题意列方程得,解得(舍去)答:平均每次下调的百分率为10%(2)方案的房款:(元)加上两年的物业管理费共需要:(元)方案的房款:(元)故方案更优惠【点睛】本题考查一元二次方程的应用,掌握相关知识,根据等量关系列方程,解方程是关键4、(1)我校改造硬件设施投资额的年平均增长率为30%;(2)从2020年到2022年,这三年我校将总共投资438.9万元【分析】(1)设我校改造硬件设施投资额的年平均增长率为x,利用2022年投资额2020年投资额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用这三年我校总共投资的金额2020年投资额+2020年投资额×(1+年平均增长率)+2022年投资额,即可求出结论【详解】解:(1)设我校改造硬件设施投资额的年平均增长率为x,依题意得:110(1+x)2185.9,解得:x10.330%,x22.3(不合题意,舍去)答:我校改造硬件设施投资额的年平均增长率为30%(2)110+110×(1+30%)+185.9110+143+185.9438.9(万元)答:从2020年到2022年,这三年我校将总共投资438.9万元【点睛】本题考查了一元二次方程的应用以及有理数的混合运算,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,列式计算5、m的最大整数值为0【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可【详解】解:关于x的方程(m1)x2+2mx+m+30有两个实数根,b24ac(2m)24(m1)(m+3)4m2(4m2+8m12)4m24m28m+128m+120,m10,解得:m且m1,则m的最大整数值为0【点睛】本题主要考查了一元二次方程根的判别式的应用,准确计算是解题的关键