2022年人教版八年级数学下册第十七章-勾股定理定向训练试卷(含答案解析).docx
-
资源ID:28179697
资源大小:872.41KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版八年级数学下册第十七章-勾股定理定向训练试卷(含答案解析).docx
人教版八年级数学下册第十七章-勾股定理定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、满足下列条件的ABC不是直角三角形的是()ABC1,AC2,ABBCBC:AC:AB3:4:5DA:B:C3:4:52、如图,在ABC中,A90°,AB6,BC10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PAPB的最小值是( )A6B8C10D123、有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上“生长”出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图所示的形状图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了888次后形成的图形中所有的正方形的面积和是( )A445B887C888D8894、如图,在ABC中,ACB90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E若AC3,AB5,则BE等于()A2BCD5、下列各组数据中,能构成直角三角形的三边的长的一组是()A1,2,3B4,5,6C5,12,13D13,14,156、如图,数轴上点A所表示的数是()AB+1C+1D17、如图,在等边ABC中,ADBC于D,延长BC到E,使CEBC,F是AC的中点,连接EF并延长EF交AB于G,BG的垂直平分线分别交BG,AD于点M,点N,连接GN,CN,下列结论:ACNBCN;GFEF;GNC120°;GMCN;EGAB,其中正确的个数是( )A2个B3个C4个D5个8、若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( )A4、6、8B3、4、5C5、12、13D1、3、9、下列是勾股数的一组是( )A6,8,10B2,3,4C1,2,3D5,7,1110、下列长度的三条线段能组成直角三角形的是()A5,11,12B4,5,6C4,6,8D5,12,13第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,等腰ABC中,ABAC5,BC6,BDAC,则BD_2、如图,Rt中,将边沿翻折,使点落在上的点处;再将边沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点、,以下四个结论:;是等腰直角三角形;其中正确结论的序号有_3、在直角坐标平面内,已知点A(1,2),点B(3,1),则线段AB的长度等于 _4、如图,在平面直角坐标系中,点,在第一象限内找一点横坐标、纵坐标均为整数的点C,使得点M是的三边垂直平分线的交点,则点C的坐标为_5、如图,已知,直角中,从直角三角形两个锐角顶点所引的中线的长,则斜边AB之长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,C90°,AB的垂直平分线分别交AB、AC于点D、E若AC8,BC4,求AE的长2、如图,RtABC中,ACB90°,分别以AC,BC,AB为边作正方形,面积分别记作S1、S2、S3求证:S1+S2S33、已知RtABC中,AC=BC,ACB90°,F为AB边的中点,且DF=EF,DFE90°,D是BC上一个动点如图1,当D与C重合时,易证:CD2DB22DF2;(1)当D不与C、B重合时,如图2,CD、DB、DF有怎样的数量关系,请直接写出你的猜想,不需证明(2)当D在BC的延长线上时,如图3,CD、DB、DF有怎样的数量关系,请写出你的猜想,并加以证明4、已知a,b,c满足|a(c)20(1)求a,b,c的值;并求出以a,b,c为三边的三角形周长;(2)试问以a,b,c为边能否构成直角三角形?请说明理由5、如图,图,图都是4×4的正方形网格,每个小正方形的顶点称为格点A,B两点均在格点上,在给定的网格中,按下列要求画图:(1)在图中,画出以AB为底边的等腰ABC,并且点C为格点(2)在图中,画出以AB为腰的等腰ABD,并且点D为格点(3)在图中,画出以AB为腰的等腰ABE,并且点E为格点,所画的ABE与图中所画的ABD不全等-参考答案-一、单选题1、D【分析】根据勾股定理的逆定理可判定A、C,由三角形内角和可判定B、D,可得出答案【详解】A、当BC1,AC2,AB时,满足BC2+AB2=1+3=4=AC2,所以ABC为直角三角形;B、当A:B:C=1:2:3时,可设A=x°,B=2x°,C=3x°,由三角形内角和定理可得x+2x+3x=180,解得x=30°,所以A=30°,B=60°,C=90°,所以ABC为直角三角形,C、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以ABC为直角三角形;D、当A:B:C=3:4:5时,可设A=3x°,B=4x°,C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以A=45°,B=60°,C=75°,所以ABC为锐角三角形,故选:D【点睛】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有勾股定理的逆定理,有一个角为直角的三角形2、B【分析】如图,由线段垂直平分线的性质可知PB=PC,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长【详解】解:如图,连接PC,EF是BC的垂直平分线,PB=PC,PA+PB=PA+PC,PAPB的最小值即为PAPC的最小值,当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长,在RtABC中,A90°,AB6,BC10,由勾股定理可得:,PAPB的最小值为8;故选B【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键3、D【分析】根据勾股定理,发现:经过一次生长后,两个小正方形的面积和等于第一个正方形的面积,故经过一次生长后,所有正方形的积和等于2;依此类推,经过n次生长后,所有正方形的面积和等于第一个正方形的面积的(n1)倍【详解】解:根据勾股定理以及正方形的面积公式,可以发现:经过次生长后,所有正方形的面积和等于第一个正方形的面积的倍,生长次后,变成的图中所有正方形的面积,生长了888次后形成的图形中所有的正方形的面积和是,故选:【点睛】本题考查了勾股定理,如果直角三角形的两条直角边分别是,斜边是,那么4、C【分析】连接EA,根据勾股定理求出BC,根据线段垂直平分线的性质得到EAEB,根据勾股定理列出方程,解方程即可【详解】解:连接EA,ACB90°,AC3,AB5,BC4,由作图可知,MN是线段AB的垂直平分线,EAEB,则AC2+CE2AE2,即32+(4BE)2BE2,解得,BE,故选:C【点睛】本题考查了线段垂直平分线的作法和性质、勾股定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键5、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题【详解】解:A.,不是直角三角形,故A不符合题意;B. ,不是直角三角形,故B不符合题意;C. ,是直角三角形,故C不符合题意;D. ,不是直角三角形,故D不符合题意,故选:C【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键6、D【分析】先根据勾股定理计算出BC,则BABC,然后计算出AD的长,接着计算出OA的长,即可得到点A所表示的数【详解】解:如图,BD1(1)2,CD1,BC,BABC,AD2,OA1+21,点A表示的数为1故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键7、B【分析】由是等边三角形,不是中点可判断;根据等边三角形的性质和三角形外角的性质得,由可判断;设,则,表示和的长可判断;作辅助线,构建三角形全等,先根据角平分线的性质得,由线段垂直平分线的性质得,证明,可判断【详解】解:是等边三角形,是的垂直平分线不是中点,N点不在ACB的角平分上,CN不平分ACB,故错误;是等边三角形,是的中点,故正确;设,则,在中,故正确;如图,过作于,连接,在等边中,平分,是的垂直平分线,在中,故错误;在和中,故正确故选:B【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、垂直平分线的性质、含30°角的直角三角形的性质等知识;熟练掌握勾股定理和等边三角形的性质,证明三角形全等是解题的关键8、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形如果没有这种关系,这个就不是直角三角形【详解】解:A、42+6282,不符合勾股定理的逆定理,故本选项符合题意;B、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D、12+32=,符合勾股定理的逆定理,故本选项符合题意故选:A【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断9、A【分析】根据勾股数的定义逐项分析即可【详解】解:A、62+82102,此选项符合题意;B、22+3242,此选项不符合题意;C、12+2232,此选项不符合题意;D、52+72112,此选项不符合题意故选:A【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数10、D【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可【详解】解:A52+11225+121146,122144,52+112122,即三角形不是直角三角形,故本选项不符合题意;B42+5216+2541,6236,42+5262,即三角形不是直角三角形,故本选项不符合题意;C42+6216+3652,8264,42+6282,即三角形不是直角三角形,故本选项不符合题意;D52+12225+144169,132169,52+122132,即三角形是直角三角形,故本选项符合题意;故选:D【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于最长边c的平方,那么这个三角形是直角三角形二、填空题1、【分析】过点A作交于点E,由等腰三角形三线合一得,由勾股定理求出AE,由等面积法即可求出BD【详解】如图,过点A作交于点E,是等腰三角形,即,解得:,故答案为:【点睛】本题考查等腰三角形的性质以及勾股定理,掌握等腰三角形三线合一是解题的关键2、【分析】根据折叠的性质,然后结合等腰三角形的性质,直角三角形的性质,以及勾股定理,分别对每个选项进行判断,即可得到答案【详解】解:由折叠的性质可知,;故正确;,是等腰直角三角形;故正确;由勾股定理,则,由勾股定理,则,故错误;,;故正确;正确的选项有;故答案为:;【点睛】本题考查了折叠的性质,勾股定理,等腰三角形的判定和性质,三角形的面积公式等知识,解题的关键是掌握折叠的性质,正确得到边相等、角相等3、5【分析】根据两点间的距离公式得到AB即可【详解】解:根据题意得AB5故答案为:5【点睛】本题考查了勾股定理和两点间的距离公式,关键是根据两点间的距离公式解答4、(4,5)或(6,1)或(6,3)【分析】连接MA,MB,根据线段垂直平分线的性质结合勾股定理可求出设C点坐标为,则,即,最后根据C点在第一象限内,且横、纵坐标都为整数,即可确定a,b的值,即得出答案【详解】如图,连接MA,MB,根据图可知点M是ABC的三边垂直平分线的交点,设C点坐标为根据题意可知,且都为整数,即,且,或或或,解得:或(舍)或或C点坐标为(4,5)或(6,1)或(6,3)故答案为:(4,5)或(6,1)或(6,3)【点睛】本题考查线段垂直平分线的性质,勾股定理,两点的距离公式理解题意,结合线段垂直平分线的性质,分析出是解答本题的关键5、8【分析】设BC=x,AC=y,根据勾股定理列方程组,从而可求得斜边的平方,即求得斜边的长【详解】设BC=x,AC=y,直角三角形两个锐角顶点所引的中线在RtADC和RtBCE中,由勾股定理得:故答案为:8【点睛】注意此题的解题技巧:根据已知条件,在两个直角三角形中运用勾股定理列方程组求解的时候,注意不必分别求出未知数的值,只需求出两条直角边的平方和,运用勾股定理即可三、解答题1、5【分析】由DE是线段AB的垂直平分线,得到AE=BE,设AE=BE=x,则CE=AC-AE=8-x,在BCE中利用勾股定理求解即可【详解】解:如图所示,连接BEDE是线段AB的垂直平分线,AE=BE,设AE=BE=x,则CE=AC-AE=8-x,C=90°,解得,AE=5【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,解题的关键在于能够熟练掌握线段垂直平分线的性质2、见解析【分析】在直角三角形ABC中,利用勾股定理求出AC2+BC2的值,根据S1,S2分别表示正方形面积,求出S1+S2的值即可【详解】证明:由题意得S1AC2,S2BC2,S3AB2在RtABC中,ACB90°,则由勾股定理,得AC2+BC2AB2, S1+S2S3【点睛】本题考查的是与勾股定理相关的图形面积问题,掌握“勾股定理”是解本题的关键.3、(1)CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2,证明见解析【分析】(1)由已知得,连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论;(2)连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论【详解】解:(1)CD2+DB2=2DF2 证明:DF=EF,DFE90°, 连接CF,BE,如图 ABC是等腰直角三角形,F为斜边AB的中点 ,即 , 又 在和中 , ,CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2 证明:连接CF、BECF=BF,DF=EF又DFC+CFE=EFB+CFB=90°DFC=EFBDFCEFB CD=BE,DCF=EBF=135° EBD=EBFFBD=135°45°=90° 在RtDBE中,BE2+DB2=DE2 DE2=2DF2 CD2+DB2=2DF2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题4、(1)a=,b=5,c=,周长=;(2)不能构成直角三角形,理由见解答【分析】(1)由非数的性质可分别求得a、b、c的值,进而解答即可;(2)利用勾股定理的逆定理可进行判断即可【详解】解:(1)|a(c)20a-=0,b-5=0,c-=0,a=2,b=5,c=3,以a,b,c为三边的三角形周长=2+3+5=5+5;(2)不能构成直角三角形,a2+c2=8+18=26,b2=25,a2+c2b2,不能构成直角三角形【点睛】本题主要考查非负数的性质及勾股定理的逆定理,利用非负数的性质求得a、b、c的值是解题的关键5、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;(2)以AB=为腰的等腰ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图ABD; AB=BD,以点B为起点找横1竖3个格,或横3竖1个格画线;如图ABD(3)以AB=为腰的等腰ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图ABEAB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的ABE与图中所画的ABD不同即可【详解】解:(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理,解得,横1竖2,或横2竖1个画线;如图ABC;(2)以AB=为腰的等腰ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图ABD;AB=BD,以点B为起点找横1竖3个格画线,或横3竖1个格;如图ABD;(3)以AB=为腰的等腰ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图ABEAB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的ABE与图中所画的ABD不全等【点睛】本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键