2022年中考特训浙教版初中数学七年级下册第五章分式综合测评试题.docx
-
资源ID:28180540
资源大小:283.90KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年中考特训浙教版初中数学七年级下册第五章分式综合测评试题.docx
初中数学七年级下册第五章分式综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、一项工作,甲、乙两人合作,4天可以完成他们合作了3天后,乙另有任务,甲单独又用了天才全部完成问甲、乙两人单独做,各需几天完成?设甲单独做需要x天,根据题意可列出方程()ABCD2、用科学记数法表示数0.0000104为( )ABCD3、 “五一”节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为( )ABCD4、随着北斗系统全球组网的步伐,北斗芯片的研发生产技术也在逐步成熟,国产北斗芯片可支持接收多系统的导航信号,应用于自动驾驶、无人机、机器人等高精度定位需求领域,将为中国北斗导航产业发展提供有力支持目前,该芯片工艺已达22纳米(即0.000000022米)则数据0.000000022用科学记数法表示为()A0.22×107B2.2×108C22×109D22×10105、若表示一个整数,则整数可取值共有( )A3个B4个C5个D6个6、某种冠状病毒细胞的直径约为m,用科学记数法表示该数是( )ABCD7、设甲、乙、丙为三个连续的正偶数,已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍,设乙为x,所列方程正确的是( )ABCD8、已知实数,满足:,则的值为( )A1BC7D9、化简的结果正确的是( )ABCD10、2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒将数据0.0000000099用科学记数法表示为( )ABCD二、填空题(5小题,每小题4分,共计20分)1、已知,则的取值范围是_2、用科学记数法表示:0.00002021_3、用小数表示应为_4、计算:_5、2020年9月22日,习近平主席在第七十五届联合国大会一般性辩论上发表重要讲话时指出,中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和二氧化碳是一种碳氧化合物,分子直径约为0.350.51nm,用科学记数法表示0.35nm_m(1nm109m)三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1);(2);(3),求的值.2、计算或化简:(1)(3)0(0.2)2009×(5)2010 (2)2(x4)(x4)(3)(x2)2(x1)(x1)3、(1)计算(2)先化简,再求值:,其中,4、先化简,再求值:()÷,其中a15、解方程:(1);(2)-参考答案-一、单选题1、B【分析】设甲单独完成需要x天,根据题意列出方程即可求出答案【详解】解:设甲单独完成需要x天,由题意可知:两人合作的效率为,甲的效率为3××1,即故选B【点睛】本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型2、B【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000104=1.04×10-5,故选:B【点睛】本题考查科学记数法,解答本题的关键是明确科学记数法的方法3、D【分析】设实际参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发前每名同学分担的车费为:,根据每个同学比原来少摊了3元钱车费即可得到等量关系【详解】解:设实际参加游览的同学共x人,根据题意得:,故选:D【点睛】本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数4、B【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:0.0000000222.2×108故选:B【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值5、D【分析】由x是整数,也表示一个整数,可知x+1为4的约数,即x+1=±1,±2,±4,从而得出结果【详解】解:x是整数,也表示一个整数,x+1为4的约数,即x+1=±1,±2,±4,x=-2,0,-3,1,-5,3则整数x可取值共有6个故选:D【点睛】本题考查了此题首先要根据分式值是整数的条件,能够根据已知条件分析出x+1为4的约数,是解决本题的关键6、D【分析】用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为整数,据此判断即可【详解】故选D【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键7、C【分析】因为甲、乙、丙为三个连续的正偶数,设乙为x,则甲为,丙为,然后根据已知甲的倒数与丙的倒数的2倍之和等于乙的倒数的3倍列出方程即可【详解】解:甲、乙、丙为三个连续的正偶数,设乙为x,则甲为,丙为,根据题意得:,故选:C【点睛】本题考查了分式方程的应用,读懂题意,找准等量关系是解决本题的关键8、B【分析】根据移项可得,将化为,根据非负数的性质确定的值,进而求得的值,代入代数式求解即可【详解】将移项可得, 解得代入解得故选B【点睛】本题考查了完全平方公式的应用,非负数的性质,负整指数幂的计算,根据完全平方公式变形是解题的关键9、D【分析】直接运用分式的混合运算法则计算即可【详解】解:,故选:D【点睛】本题考查了分式的混合运算,熟练掌握分式的混合运算法则是解本题的关键10、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为 a×,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数 n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解: 0.0000000099=,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为 a×,其中 1|a|<10 , n 为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题1、a-1【分析】根据零指数幂:a0=1(a0)判断即可【详解】解:根据题意知,a+10解得a-1故答案是:a-1【点睛】本题主要考查了零指数幂,注意:00无意义2、【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解【详解】解:故答案为:【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为 ,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键3、-0.00016【分析】根据负整数指数幂的意义得出,即可求解【详解】解:故答案为【点睛】本题考查了科学记数法,解题关键是熟知:绝对值大于0小于1的数的科学记数法的形式(,n为正整数)中,n为原数从左至右第一个非零数前面0的个数4、#【分析】原式通分并利用同分母分式的减法法则计算,即可得到结果【详解】解:原式故答案为:【点睛】本题考查了整式与分式的加减运算,如果一个分式与一个整式相加减,那么可以把整式的分母看成1,先通分,再进行加减运算5、【分析】科学记数法的表示形式为的形式,其中,为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数的绝对值大于等于10时,为正数,小于1时,为负数【详解】解:,故答案为:【点睛】此题主要考查了科学记数法的表示方法科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值三、解答题1、(1);(2)当时,;(3)【分析】(1)设,方程组变形为关于a与b的方程组,求出解得到a与b的值,即可求出x与y的值;(2)利用加减消元法求解即可;(3)先求出,再利用加减消元法可分别求出,代入计算后即可求得代数式的值【详解】解:(1),解:设,则原方程组可化为,×2+×3得:,则,把代入得:,则,即,×5-得:,即,把代入得:,经检验,方程组的解为;(2),×3,得,当时,将代入,得,解得,当时,原方程组的解为;(3),+,得,则,-,得,-,得,【点睛】此题主要考查了解二元一次方程组,利用了换元的思想,熟练加减消元法与代入消元法是解本题的关键2、(1)6;(2)2x232;(3)4x5【分析】(1)第一项根据零指数幂计算,第二项根据积的乘方逆运算计算;(2)先根据平方差公式计算,再去括号即可;(3)先根据完全平方公式、平方差公式计算,再合并同类项;【详解】解:(1)原式1(0.2)2009×(5)2009×(5)1(0.2×5)2009×5156;(2)原式2(x216)2x232;(3)原式x24x4x214x5【点睛】本题主要考查了整式的混合运算,熟练掌握平方差公式,完全平方公式,积的乘方法则是解答本题的关键3、(1)-11,(2)4a2-4ab+2b2,【分析】(1)按照实数计算方法和计算法则计算即可 (2)先化简,再代入数值求解【详解】解:(1)原式;(2)原式,当得:原式=【点睛】本题考查实数的混合运算和代数式的混合运算,掌握对应的方法和运算法则是本题解题关键4、,-1【分析】先算括号内的减法,再把除法变成乘法,求出结果,最后代入求出即可【详解】解:原式 ,当a1时,原式【点睛】本题考查了分式的混合运算,对于分式的混合运算,应注意运算顺序:先算乘方,再算乘除,最后算加减,有括号的要先算括号内的此外,也应仔细观察式子的特点,灵活选择简便的方法计算,如使用运算律、公式等5、(1)x4;(2)x2【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:(1)方程两边同时乘以x2得x3+x23,解整式方程得,x4,检验:当x4时,x20x4是原方程的解(2)方程两边同时乘以(x1)(2x+3)得:2x2x62(x2)(x1),整理得:5x10,解得:x2,检验:当x2时,(x1)(2x+3)0,分式方程的解为x2【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验