2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组定向攻克试题(无超纲).docx
-
资源ID:28180681
资源大小:296.47KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组定向攻克试题(无超纲).docx
初中数学七年级下册第九章不等式与不等式组定向攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如果,那么下列不等式中正确的是( )ABCD2、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折A9B8C7D63、若ab,则下列不等式一定成立的是( )A2a2bBambmCa3b3D114、下列说法正确的是( )A若ab,则3a2bB若ab,则ac2bc2C若2a2b,则abD若ac2bc2,则ab5、关于x的方程32x3(k2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A5B2C4D66、已知x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解,则a的取值范围是( )Aa2Ba1C2a1D2a17、不等式组的最小整数解是( )A5B0CD8、如果关于x的方程ax3(x+1)1x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为()A3B4C5D69、已知关于的不等式的解集为,则的取值范围是( )ABCD10、下列判断正确的是( )A由,得B由,得C由,得D由,得二、填空题(5小题,每小题4分,共计20分)1、不等式组的解集为_2、在不等式中,a,b是常数,且当_时,不等式的解集是;当_时,不等式的解集是3、若m与3的和是正数,则可列出不等式:_4、若关于的不等式的解集如图所示,则的值为_5、已知点关于轴的对称点在第一象限,则的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、解下列不等式:(1);(2)2、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”例如:方程2x60的解为x3,不等式组的解集为2x5因为235所以称方程2x60为不等式组的相伴方程(1)若关于x的方程2xk2是不等式组的相伴方程,求k的取值范围;(2)若方程2x+40,1都是关于x的不等式组的相伴方程,求m的取值范围;(3)若关于x的不等式组的所有相伴方程的解中,有且只有2个整数解,求n的取值范围3、学校计划开展暑期实践活动,由一个带队老师和若干同学,共x人参加有甲乙两个旅行社可供选择两个旅行社的原价均为100元/人,现都推出优惠措施:甲旅行社:参团人员每人打七五折(原价的75%)乙旅行社:带队老师免费,学生每人打八折(原价的80%)(1)请你用含有x的代数式分别表示甲乙两个旅行社的总费用:甲: 元;乙: 元(2)当学生人数为20人时,请你分别计算甲乙两个旅行社的总费用;(3)你认为学校选用哪个旅行社花费更少?请直接写出答案4、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案5、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱(1)求食品和矿泉水各有多少箱;(2)现计划租用,两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少?-参考答案-一、单选题1、A【分析】根据不等式的性质解答【详解】解:根据不等式的性质3两边同时除以2可得到,故A选项符合题意;根据不等式的性质1两边同时减去1可得到,故B选项不符合题意;根据不等式的性质2两边同时乘以-1可得到,故C选项不符合题意;根据不等式的性质1和2:两边同时乘以-1,再加上2可得到,故D选项不符合题意;故选:A【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变2、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可【详解】设打x折,根据题意得:1100×700700×10%,解得:x7,至多可以打7折故选:C【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解3、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:Aab,2a2b,故本选项符合题意;Bab,当m0时,ambm,故本选项不符合题意;Cab,a3b3,故本选项不符合题意;Dab,故本选项不符合题意;故选:A【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变4、D【分析】利用不等式的性质,即可求解【详解】解:A、若ab,则3a3b,故本选项错误,不符合题意; B、若ab,当c0时,则ac2bc2,故本选项错误,不符合题意; C、若2a2b,则ab,故本选项错误,不符合题意; D、若ac2bc2,则ab,故本选项正确,符合题意; 故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键5、C【分析】先求出32x3(k2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k1,则1k3,再由整数k和是整数进行求解即可【详解】解:解方程32x3(k2)得x,方程的解为非负整数,0,把整理得:,由不等式组无解,得到k1,1k3,即整数k0,1,2,3,是整数,k1,3,综上,k1,3,则符合条件的整数k的值的和为4故选C【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解6、A【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围【详解】解:x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解, 且 ,即4(2a+2)0且(a+2)0,解得:a2故选:A【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键7、C【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可【详解】解:解不等式,得:,解不等式,得:,故不等式组的解集为:,则该不等式组的最小整数解为:故选:C【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8、C【分析】先解关于y的不等式组可得解集为,根据关于y的不等式组有解可得,由此可得,再解关于x的方程可得解为,根据关于x的方程ax3(x+1)1x有整数解可得的值为整数,由此可求得整数a的值,由此即可求得答案【详解】解:,解不等式,得:,解不等式,得:,不等式组的解集为,关于y的不等式组有解,解得:,ax3(x+1)1x,ax3x31x,ax3xx13,(a2)x4,关于x的方程ax3(x+1)1x有整数解,a为整数,a24,2,1,1,2,4,解得:a6,4,3,1,0,2,又,a4,3,1,0,2,符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键9、C【分析】由题意直接根据已知解集得到,即可确定出的范围【详解】解:不等式的解集为,解得:故选:C【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解答本题的关键10、D【分析】根据一元一次不等式的解法逐项判断即可得【详解】解:A、由,得,则此项错误;B、由,得,则此项错误;C、由,得,则此项错误;D、由,得,则此项正确;故选:D【点睛】本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键二、填空题1、【分析】首先分别解两个不等式,再根据:大大取大,小小取小,大小小大取中间,大大小小取不着,写出公共解集即可【详解】解不等式,得:解不等式,得不等式组的解集为:故答案为:【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键2、 【分析】移项后,根据不等式的解集及不等式的性质即可判断a的符号【详解】移项得:则当时,不等式的解集为;当时,不等式的解集为;故答案为:,【点睛】本题考查了不等式的基本性质,要注意的是,应用不等式的基本性质3时,不等号要改变方向3、【分析】根据题意列出不等式即可【详解】若m与3的和是正数,则可列出不等式故答案为:【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键4、3【分析】由数轴可以得到不等式的解集是x2,根据已知的不等式可以用关于m的式子表示出不等式的解集就可以得到一个关于m的方程,可以解方程求得【详解】解:解不等式x+m1得由数轴可得,x2,则解得,m3故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括2,即x2并且本题是不等式与方程相结合的综合题5、【分析】根据题意可知点在第四象限,然后根据第四象限点的坐标特征求解即可【详解】解:点关于轴的对称点在第一象限,点在第四象限,解得:,故答案为:【点睛】本题考查了点的坐标特征以及解一元一次不等式组,根据题意得出点在第四象限是解本题的关键三、解答题1、(1);(2)【解析】【分析】(1)由题意去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集;(2)由题意去分母,去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集【详解】解:(1),去括号得:,移项,合并同类项得:,不等式的两边同除以得:不等式的解集是:(2),去分母得:,去括号得:,移项,合并同类项得:,不等式的两边同除以得:不等式的解集是:【点睛】本题主要考查一元一次不等式的解法,熟练掌握并利用解一元一次不等式的一般步骤解答是解题的关键2、(1)3k4;(2)2m3;(3)4n6【解析】【分析】(1)首先求出方程2xk2的解和不等式组的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+40,1的解,然后分m2和m2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组的解集,然后根据题意列出关于n的不等式组求解即可【详解】解:(1)不等式组为,解得,方程为2xk2,解得x,根据题意可得,解得:3k4,故k取值范围为:3k4(2)方程为2x+40,解得:x2,x1;不等式组为,当m2时,不等式组为,此时不等式组解集为x1,不符合题意,应舍去;当m2时不等式组解集为m5x1,根据题意可得,解得2m3;故m取值范围为:2m3(3)不等式组为,解得1x,根据题意可得,3,解得4n6,故n取值范围为4n6【点睛】此题考查了新定义问题,一元一次方程和一元一次不等式组含参数问题,解题的关键是正确分析新定义的“相伴方程”概念,并列出方程求解3、(1) ; ;(2)甲旅行社的总费用1575元,乙旅行社的总费用1600元;(3)当 时,两家旅行社的费用一样;当 时,乙旅行社的花费更少;当 时,甲旅行社的花费更少【解析】【分析】(1)根据题意分别列出代数式,表示出两家旅行社的总费用,即可求解;(2)当学生人数为20人时,分别计算甲乙两个旅行社的总费用,即可求解;(3)分三种情况讨论,即可求解【详解】解:(1)甲旅行社的总费用: 元,乙旅行社的总费用: 元;(2)当学生人数为20人时,甲旅行社的总费用:元,乙旅行社的总费用: 元;(3)当 ,即 时,两家旅行社的费用一样;当 ,即 时,乙旅行社的花费更少;当 ,即 时,甲旅行社的花费更少【点睛】本题主要考查了列代数式,一元一次方程和一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键4、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【解析】【分析】(1)设甲型号手机每部进价为元,乙为元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案【详解】解:(1)解:设甲型号手机每部进价为元,乙为元,由题意得,解得答:甲型号手机每部进价为2000元,乙为1800元(2)设甲型号进货台,则乙进货台,由题意可知解得故或9或10,则共有种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键5、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【解析】【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论【详解】解:(1)设食品有箱,矿泉水有箱,依题意,得,解得,答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3m5,又m为正整数,m可以为3,4,5,共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元)495051005250,政府应该选择方案1,才能使运费最少,最少运费是4950元【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费