2022年最新人教版初中数学七年级下册-第六章实数专题练习试题(含详细解析).docx
-
资源ID:28180968
资源大小:219.86KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新人教版初中数学七年级下册-第六章实数专题练习试题(含详细解析).docx
初中数学七年级下册 第六章实数专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列各数中,是无理数的是 ( )AB-2C0D2、下列说法正确的是( )A0.01是0.1的平方根 B小于0.5C的小数部分是D任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方如此进行下去,得到的数会越来越趋近13、下列四个数中,无理数是( )ABC0D14、下列各数中,无理数是( )ABCD5、下列命题中,是假命题的是()A平面内,若ab,ac,那么bcB两直线平行,同位角相等C负数的平方根是负数D若,则ab6、关于的叙述,错误的是()A是无理数B面积为8的正方形边长是C的立方根是2D在数轴上可以找到表示的点7、下列四个实数中,为无理数的是( )A0BCD8、下列四个数中,最小的数是( )A3BC0D9、在实数,1.12112111211112(每两 个2之间依次多一个1)中,无理数有( )个A2B3C4D510、下列各组数中相等的是( )A和3.14B25%和C和0.625D13.2%和1.32二、填空题(5小题,每小题4分,共计20分)1、如图是一个“数值转换机”的示意图,若输入的x的值为2,输出的值为,则输入的y值为 _2、比较大小:_3、已知a29,则a_4、x,y都是实数,且|x3|0,那么_5、已知在两个连续的整数和之间,则的平方根为_三、解答题(5小题,每小题10分,共计50分)1、计算:2、(1)计算:;(2)求式中的x:(x4)2813、实数a,b,c是数轴上三点A,B,C所对应的数,如图,化简:4、已知某正方形的面积为12,求该正方形的周长5、已知的一个平方根是3,的一个平方根是,求的平方根-参考答案-一、单选题1、D【分析】根据无限不循环小数叫无理数,即可选择【详解】解:A:,是有理数,不符合题意;B:-2是整数,属于有理数,不符合题意;C:0是整数,属于有理数,不符合题意;D:是无限不循环小数,属于无理数,符合题意故选:D【点睛】本题考查了无理数,掌握无理数是无限不循环小数,有理数是有限小数或无限循环小数是解答本题的关键2、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键3、B【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:A是分数,属于有理数,故本选项不合题意;B是无理数,故本选项符合题意;C0是整数,属于有理数,故本选项不合题意;D1是整数,属于有理数,故本选项不合题意;故选:B【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数4、B【详解】解:A、是有理数,故本选项不符合题意;B、是无理数,故本选项符合题意;C、是有理数,故本选项不符合题意;D、是有理数,故本选项不符合题意;故选:B【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键5、C【详解】根据平行线的性质、平方根的概念、算术平方根的概念判断即可【解答】解:A、平面内,若ab,ac,那么bc,是真命题,不符合题意;B、两直线平行,同位角相等,是真命题,不符合题意;C、负数没有平方根,故本说法是假命题,符合题意;D、若,则ab,是真命题,不符合题意;故选C【点睛】本题主要考查了平行线的性质,平方根和算术平方根的定义,熟知相关知识是解题的关键6、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解【详解】解:A、是无理数,该说法正确,故本选项不符合题意;B、,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键7、B【分析】根据无理数的定义:“无限不循环的小数是无理数”,逐项分析判断即可【详解】A. 0是有理数,故该选项不符合题意;B. 是无理数,故该选项符合题意; C. 是有理数,故该选项不符合题意;D. 是有理数,故该选项不符合题意;故选B【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数8、D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可【详解】解:,最小的数是,故选D【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小9、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数【详解】有理数有:,一共四个无理数有:,1.12112111211112(每两 个2之间依次多一个1),一共四个故选:C【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112,等有规律的数10、B【分析】是一个无限不循环小数,约等于3.142,3.1423.14,即3.14;1÷40.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%;3÷80.375,0.3750.625,即0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.1321.32,即13.2%1.32【详解】解:A 、3.142,3.1423.14,即3.14;B 、1÷40.2525%;C 、3÷80.375,0.3750.625,即0.625;D 、13.2%0.132,0.1321.32,即13.2%1.32故选:B【点睛】此题主要是考查小数、分数、百分数的互化及圆周率的限值小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦二、填空题1、-3【解析】【分析】利用程序图列出式子,根据等式的性质和立方根的意义即可求得y值【详解】解:由题意得:(2)2+y3÷24+y323y327(3)327,y3故答案为:3【点睛】本题主要考查了根据程序框图列式计算,立方根的性质,准确计算是解题的关键2、【解析】【分析】先把两个数同时平方后比较大小,因为都是正数,即平方后的数越大,其这个数越大,由此求解即可【详解】解:,故答案为:【点睛】本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法3、【解析】【分析】根据平方根的性质:x =a,得x=± ,即可解答【详解】解:,a=±3,故答案为【点睛】此题考查平方根,解题关键在于掌握运算法则4、1【解析】【分析】根据绝对值的非负性和算术平方根的非负性求得的值,进而求得的值【详解】解:|x3|0,解得故答案为:【点睛】本题考查了绝对值的非负性和算术平方根的非负性,求得的值是解题的关键5、【解析】【分析】先判断,得到和的值,然后进行相加,再求平方根即可【详解】解:由题意,的平方根为;故答案为:【点睛】本题考查了估算无理数的大小,以及平方根的定义,正确得出是解题关键三、解答题1、2【解析】【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算【详解】解:3()+(1)3+12【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.2、(1);(2)或【解析】【分析】(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;(2)根据平方根的意义,计算出x的值【详解】解:(1)原式;(2)由平方根的意义得:或或【点睛】本题考查了平方根意义和实数的运算题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键3、【解析】【分析】根据数轴上点的位置可得,然后根据求立方根,绝对值和算术平方根的计算法则进行求解即可【详解】解:由数轴上点的位置可知:,原式【点睛】本题主要考查了实数与数轴,算术平方根,立方根和绝对值,解题的关键在于能够根据数轴上点的位置得到4、【解析】【分析】利用算术平方根,根据面积求得边长,即可求解【详解】解:设正方形的边长为x,x0,正方形的面积为12,x212该正方形的周长答:该正方形的周长为【点睛】此题考查了算术平方根的应用,解题的关键是利用算术平方根,根据面积求得边长5、的平方根为【解析】【分析】先根据题意得出2a19,3ab116,然后解出a5,b2,从而得出a2b549,所以a2b的平方根为±3【详解】解:2a1的平方根为±3,3ab1的平方根为±4,2a19,3ab116,解得:a5,b2,a2b549,a2b的平方根为±3【点睛】此题考查了平方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根