2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程专题训练试卷(含答案解析).docx
-
资源ID:28181678
资源大小:374.57KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程专题训练试卷(含答案解析).docx
北师大版八年级数学下册第五章分式与分式方程专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则的值为( )ABCD2、在,中,分式的个数是()A1B2C3D43、某工程队要修路20千米,原计划平均每天修x千米,实际平均每天多修了0.1千米,则完成任务提前了()A()天B()天C()天D()天4、若关于x的分式方程1无解,则m的值是()Am2或m6Bm2Cm6Dm2或m65、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地求前一小时的行驶速度设前一小时的行驶速度为,则可列方程( )ABCD6、斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度如图,某路口的斑马线路段ABC横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用22秒通过AC路段,其中通过BC路段的速度是通过AB路段速度的1.2倍,则小敏通过AB路段时的速度是( )A0.5米/秒B1米/秒C1.5米/秒D2米/秒7、若代数式运算结果为x,则在“”处的运算符号应该是( )A除号“÷”B除号“÷”或减号“-”C减号“-”D乘号“×”或减号“-”8、已知关于x的分式方程的解是正数,则m的取值范围是( )ABC且D且9、下列关于x的方程是分式方程的是( )ABCD10、如果把分式中的和都扩大为原来的2倍,那么分式的值( )A扩大为原来的4倍B扩大为原来的2倍C不变D缩小为原来的2倍第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当_ 时,分式的值为零2、若,且,则的值为_3、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_4、约分:=_5、已知,则分式的值为_三、解答题(5小题,每小题10分,共计50分)1、计算:2、星期六,小明与妈妈到离家12km的张家界市博物馆参观小明从家骑自行车先走,1h后妈妈骑摩托车从家出发,沿相同路线前往博物馆,结果他们同时到达已知妈妈骑摩托车的平均速度是小明骑自行车平均速度的3倍,求妈妈骑摩托车的平均速度3、已知,求代数式的值4、(1)先化简,再求值:,其中(2)解分式方程:5、某经销商用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元(1)求一件A,B型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益-参考答案-一、单选题1、A【分析】根据a和b之间的关系式用a来表示b,再代入所求代数式中计算即可求解【详解】解:,故选:A【点睛】本题考查分式的化简求值,熟练掌握该知识点是解题关键2、C【分析】根据分式的定义逐个分析判断即可【详解】解:在,中,分式有,共3个,是整式故选:C【点睛】本题考查了分式的判断,掌握分式的定义是解题的关键一般地,如果、(不等于零)表示两个整式,且中含有字母,那么式子就叫做分式,其中称为分子,称为分母3、A【分析】工程提前的天数原计划的天数实际用的天数,把相关数值代入即可【详解】解:原计划用的天数为,实际用的天数为, 故工程提前的天数为()天 故选:A【点睛】此题考查了列分式解决实际问题,正确理解题意是解题的关键4、A【分析】先去分母得到整式方程,解整式方程得x=m-4,利用分式方程无解得到x=±2,所以m-4=±2,然后解关于m的方程即可【详解】解:1去分母得x+m-x(x+2)=-x2+4,解得x=m-4,原方程无解,x=2或-2,即m-4=2,解得m=6;或m-4=-2,解得m=2;即当m=2或6时,关于x的分式方程1无解故选:A【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解5、C【分析】根据原计划的时间实际所用时间提前的时间可以列出相应的分式方程【详解】解:设前一小时的行驶速度为,由题意可得:,即,故选:C【点睛】本题主要是考查了列分式方程,熟练地根据题意找到等量关系,通过等量关系列出对应的分式方程,这是解题的关键6、B【分析】设通过AB的速度是xm/s,则根据题意可列分式方程,解出x即可【详解】设通过AB的速度是xm/s,根据题意可列方程: ,解得x=1,经检验:x=1是原方程的解且符合题意所以通过AB时的速度是1m/s故选B【点睛】本题考查分式方程的实际应用,根据题意找出等量关系并列出分式方程是解答本题的关键7、B【分析】分别计算出+、-、×、÷时的结果,从而得出答案【详解】解:,故选B【点睛】本题主要考查分式的运算,解题的关键是熟练掌握分式的运算法则8、D【分析】先求出分式方程的解,由方程的解是正数得m-2>0,由x-10,得m-2-10,计算可得答案【详解】解:,m-3=x-1,得x=m-2,分式方程的解是正数,x>0即m-2>0,得m>2,x-10, m-2-10,得m3,且,故选:D【点睛】此题考查了利用分式方程的解求参数的取值范围,正确求解分式方程并掌握分式的分母不等于零的性质是解题的关键9、C【分析】根据分式方程的定义判断选择即可【详解】A. ,是一元一次方程,不符合题意; B. ,是一元一次方程,不符合题意; C. ,是分式方程,符合题意; D. ,是一元一次方程,不符合题意故选:C【点睛】本题考查分式方程的定义掌握分式方程是指分母里含有未知数或含有未知数整式的有理方程是解答本题的关键10、B【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可【详解】解:分别用2x和2y去代换原分式中的x和y,得,可见新分式扩大为原来的2倍故选B【点睛】本题主要考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论二、填空题1、【分析】由分式的值为0的条件可得:,再解方程与不等式即可得到答案.【详解】解: 分式的值为零, 由得: 由得:且 综上: 故答案为:【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.2、5【分析】先通分,再整体代入求值即可得到结果【详解】解:,且,故答案为:5【点睛】解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积3、1【分析】设黄球的个数为x个,然后根据概率公式列方程,解此分式方程即可求得答案【详解】解:设黄球的个数为x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程的解,黄球的个数为1个故答案为:1【点睛】此题考查了分式方程的应用,以及概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比4、【分析】先找出分子分母的公因式,然后将分子与分母约去公因式即可【详解】解:,故答案为:【点睛】此题主要考查了约分,找出公因式是解题关键5、#【分析】先把条件式化为再整体代入代数式求值即可.【详解】解: ,去分母得: 故答案为:【点睛】本题考查的是已知条件式求解分式的值,把条件式变形,再整体代入求值是解本题的关键.三、解答题1、1【分析】直接利用分式的加减运算法则计算即可【详解】解:,【点睛】本题主要考查了分式的加减运算,解题的关键是正确掌握运算法则2、妈妈骑摩托车的平均速度是24km/h【分析】设小明骑自行车的平均速度为x km/h,则妈妈骑摩托车的平均速度为3x km/h,根据时间=路程÷速度,结合小明比妈妈多用1h,即可得出关于x的分式方程,解之经检验后即可得出结论【详解】解:设小明自行车的平均速度为xkm/h,则妈妈骑摩托车的速度为3xkm/h,根据题意得,解得,x=8,经检验,x=8是原方程的根,3x=3×8=24(km/h)答:妈妈骑摩托车的平均速度是24km/h【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键3、1【分析】先化简分式得到原式,再将代入即可得到结果【详解】解:,原式=1【点睛】本题考查了分式的化简求值:先进行分式的乘除运算(把分子或分母因式分解,约分),再进行分式的加减运算(即通分),然后把字母的值代入(或整体代入)进行计算4、(1),;(2)x=【分析】(1)先对原式化简,再将m=-3代入化简后的式子即可解答本题;(2)先把分式方程变形成整式方程,求解后再检验即可【详解】解:(1)=,当m=-3时,原式=; (2)原方程变形为方程两边同乘以2(3x-1),得 3(3x-1)-2= 5,去括号得,9x-3-2=5,整理得,9x=10,解得x=,检验:当x=时,2(3x-1)0,x=是原分式方程的解【点睛】本题考查了解分式方程,分式的化简求值,解题的关键是明确分式化简求值的方法解分式方程注意要检验5、(1)一件B型商品的进价为150元,则一件A型商品的进价为160元;(2);(3)当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为元根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润两种商品的利润之和,列出式子即可解决问题;(3)设利润为元则,分三种情形讨论利用一次函数的性质即可解决问题(1)解:设一件B型商品的进价为x元,则一件A型商品的进价为元,由题意:,解得,经检验是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元;(2)解:客商购进A型商品m件,客商购进B型商品件,由题意:,A型商品的件数不大于B型的件数,且不小于80件,;(3)解:设收益为元,则,当时,即时,w随m的增大而增大,当时,最大收益为元;当,即时,最大收益为17500元;当时,即时,w随m的增大而减小,时,最大收益为元,当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键