欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年最新精品解析北师大版九年级数学下册第二章二次函数章节训练试题(含详细解析).docx

    • 资源ID:28182812       资源大小:537.99KB        全文页数:28页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年最新精品解析北师大版九年级数学下册第二章二次函数章节训练试题(含详细解析).docx

    北师大版九年级数学下册第二章二次函数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次函数yax22ax1(a为常数,且a0)的图象上有三点A(2,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是( )Ay1y2y3By1y3y2Cy2y1y3Dy2y3y12、将二次函数的图象沿x轴向左平移2个单位长度,再沿y轴向上平移3个单位长度,得到的函数表达式是( )ABCD3、已知抛物线的解析式为,则这条抛物线的顶点坐标是( )ABCD4、下列函数中,是二次函数的是( )ABCD5、下列二次函数的图象与x轴没有交点的是( )Ay3x22xByx23x4Cyx24x4Dyx24x56、若抛物线与轴没有交点,则的取值范围是( )ABCD7、对于题目“抛物线:与直线:只有一个交点,则整数的值有几个”;你认为的值有( )A3个B5个C6个D7个8、在平面直角坐标系中,将二次函数的图象在轴上方的部分沿轴翻折后,所得新函数的图象如图所示(实线部分)若直线与新函数的图象有3个公共点,则的值是( )A0B-3C-4D-59、下列关于二次函数y2x2的说法正确的是()A它的图象经过点(1,2)B当x0时,y随x的增大而减小C它的图象的对称轴是直线x2D当x0时,y有最大值为010、在平面直角坐标系中,点M的坐标为(m,m2 - bm),b为常数且b > 3若m2 - bm > 2 - b,m < ,则点M的横坐标m的取值范围是 ( )A0 < m < Bm < C < m < Dm < 第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数(h、k均为常数)的图象经过A(2,y1)、B(0,y2)、C(2,y3)三点,若y2y1y3,则h的取值范围是_2、抛物线的对称轴及部分图象如图所示,则关于x的一元二次方程的两根为_3、下列关于二次函数yx22mx2m3(m为常数)的结论:该函数的图象与x轴总有两个公共点;若x1时,y随x的增大而增大,则m1;无论m为何值,该函数的图象必经过一个定点;该函数图象的顶点一定不在直线y2的上方其中正确的是_(填写序号)4、二次函数,自变量x与函数y的对应值如表:x0123y500512则当时,y满足的范围是_5、抛物线的顶点坐标是_三、解答题(5小题,每小题10分,共计50分)1、一大型商场经营某种品牌商品,该商品的进价为每件30元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:x(元/件)405060y(件)1000095009000(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于150元/件若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于150元/件时,每销售一件商品便向某慈善机构捐赠m元,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大请求出m的取值范围2、绿色生态农场生产并销售某种有机生态水果经市场调查发现,该生态水果的周销售量(千克)是销售单价(元/千克)的一次函数其销售单价、周销售量及周销售利润(元)的对应值如表请根据相关信息,解答下列问题:(1)这种有机生态水果的成本为_元/千克;(2)求该生态水果的周销售量(千克)与销售单价(元/千克)之间的函数关系式;(3)若农场按销售单价不低于成本价,且不高于60元/千克销售,则销售单价定为多少,才能使销售该生态水果每周获得的利润(元)最大?最大利润是多少?销售单价(元/千克)4050周销售量(千克)180160周销售利润(元)180032003、如图,在平面直角坐标系中,抛物线yx2+bx+c,与y轴交于点A,与x轴交于点E、B且点A(0,5),B(5,0),点P为抛物线上的一动点(1)求二次函数的解析式;(2)如图,过点A作AC平行于x轴,交抛物线于点C,若点P在AC的上方,作PD平行于y轴交AB于点D,连接PA,PC,当S四边形APCD时,求点P坐标;(3)设抛物线的对称轴与AB交于点M,点Q在直线AB上,当以点M、E、P、Q为顶点的四边形为平行四边形时,请直接写出点Q的坐标4、在平面直角坐标系xOy中,对于抛物线yax2x+1(a0)(1)求抛物线yax2x+1的顶点坐标;(2)当1x2时,y的最大值为7,求a;(3)分别过点M(t,0)和点N(t+1,0)作x轴垂线,交抛物线于点A和B记抛物线在A,B两点之间的部分为图象G(包括A,B两点),若对于任意的t,在图象G上都存在两点,且这两点纵坐标的差的绝对值不小于1,请直接写出a的最小值5、在平面直角坐标系中,抛物线(x0)的图象记为,将绕坐标原点旋转180°得到图象,图象和合起来记为图象(1)直接写出图象的解析式;(2)当n=1时,若Q(t,1)在图象上,求t的值;当kx2(k2)时,图象对应函数的最大值与最小值差为6时,直接写出k的取值范围(3)当以A(2,3),B(2,1),C(3,1),D(3,3)为顶点的矩形ABCD的边与图象有且只有两个公共点时,直接写出n的取值范围-参考答案-一、单选题1、D【分析】首先计算出抛物线的对称轴,然后结合开口方向,以及各点和对称轴的远近判断对应函数值大小即可【详解】解:由题意,抛物线对称轴为:直线,a0,则该抛物线开口向上,离对称轴越近的点,对应的函数值越小,越远的点,对应函数值越大,故选:D【点睛】本题考查比较二次函数值的大小,当抛物线开口向上时,离对称轴越近的点,对应的函数值越小,越远的点,对应的函数值越大;相反,当抛物线开口向下时,离对称轴越近的点,对应的函数值越大,越远的点,对应的函数值越小;掌握此方法是解题关键2、D【分析】根据二次函数的平移方法“左加右减,上加下减”可直接进行排除选项【详解】解:由二次函数的图象沿x轴向左平移2个单位长度,再沿y轴向上平移3个单位长度,得到的函数表达式是;故选D【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键3、B【分析】利用抛物线解析式即可求得答案【详解】解:,抛物线顶点坐标为,故选:B【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2k中,顶点坐标为(h,k),对称轴为xh4、B【分析】根据二次函数的定义即可判断【详解】A. 是反比例函数,故此选项错误;B. 是二次函数,故此选项正确;C. 是一次函数,故此选项错误;D. 是正比例函数,故此选项错误故选:B【点睛】本题考查二次函数的定义:形如,其中,且a、b、c是常数,掌握二次函数的定义是解题的关键5、D【分析】将函数交点问题,转化为求方程根,然后分别计算判别式的值,来判断抛物线与x轴的交点个数即可【详解】A、=22-4×(-3)×0>0,此抛物线与x轴有两个交点,所以A选项错误;B、=(-3)2-4×1×(-4)>0,此抛物线与x轴有两个交点,所以B选项错误;C、=(-4)2-4×1×4=0,此抛物线与x轴有1个交点,所以C选项错误;D、=42-4×1×5<0,此抛物线与x轴没有交点,所以D选项正确故选:D【点睛】本题考查的是函数图象与x轴的交点的判断,熟练掌握方程与函数的联系及根的判别式是正确解答本题的关键6、D【分析】根据题意得令,得,则,即可解得答案【详解】解:根据题意得令,解得故选:D【点睛】本题考查了抛物线与轴的交点:对于二次函数(,是常数,),令后,得到关于的一元二次方程,的情况决定了一元二次方程根的情况,相应的决定了抛物线与轴的交点个数7、D【分析】根据二次函数的图象和性质解答即可【详解】解:由抛物线:可知:抛物线开口向上,对称轴为直线x=1,顶点坐标为(1,4),如图,当x=1时,y=0,当x=4时,y=5,抛物线与直线y=m只有一个交点,0m5或m=4,整数m=0或1或2或3或4或5或4,即整数m的值有7个,故选:D【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解答的关键8、C【分析】由图可知,当与新函数有3个交点时,过新函数的顶点,求出点的坐标,其纵坐标即为所求【详解】解:原二次函数,顶点,翻折后点对应的点为,当直线与新函数的图象有3个公共点,直线过点,此时故选:C.【点睛】本题主要考查了翻折的性质,抛物线的性质,确定翻折后的顶点坐标;利用数形结合的方法是解本题的关键9、B【分析】 是一条开口向上的抛物线,对称轴为轴即直线,在对称轴处取最小值为,在对称轴左侧随的增大而减小【详解】A将代入求得,表述错误,故不符合题意;B根据函数的性质,当时,随的增大而减小,表述正确,故符合题意;C图像的对称轴是直线,表述错误,故不符合题意;D当时,取最小值,表述错误,故不符合题意;故选B【点睛】本题考查了二次函数的性质解题的关键在于对二次函数知识的全面掌握10、B【分析】由m2 - bm > 2 - b,得到m2 - bm - 2 +b=0,因式分解得,进而判断出,故当m2 - bm - 2 +b>0时,或,再由,且,可知无解,即可求解.【详解】m2 - bm > 2 - b, m2 - bm - 2 +b>0,令m2 - bm - 2 +b=0,则,则或,解得:,二次函数y= x2 - bx - 2 +b,开口向上,与x轴交点为x1,x2,(且x1<x2),则当y>0时,x< x1,或x>x2,令x=m,则y= m2 - bm - 2 +b=0,解得,即,当m2 - bm - 2 +b>0时,或,则,且,无解,故选:B【点睛】此题考查了因式分解法解一元二次方程,二次函数的图象的性质,对进行取值范围的确定是解答此题的关键.二、填空题1、【分析】首先判定出二次函数开口向上,对称轴为,然后根据二次函数的增减性求解即可【详解】解:二次函数(h、k均为常数),二次函数开口向上,对称轴为,图象经过A(2,y1)、B(0,y2)、C(2,y3)三点,由y2y1y3可得,点A离对称轴比点B离对称轴远,点C离对称轴比点A离对称轴远,解得:故答案为:【点睛】此题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的图像和性质2、故答案为:-2; 【点睛】本题考查了二次函数的三种形式:一般式:yax2bxc(a,b,c是常数,a0); 顶点式:ya(xh)2k(a,h,k是常数,a0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k);交点式:ya(xx1)(xx2)(a,b,c是常数,a0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(x1,0),(x2,0)3,【分析】利用图象法可得,再根据抛物线的对称性求得,即可求解【详解】解:根据图象可得:抛物线与x轴的交点为,对称轴为方程的解为,故答案为:,【点睛】本题考查了用图象法解一元二次方程的问题,掌握图象法解一元二次方程的方法、抛物线的性质是解题的关键3、【分析】根据根的判别式化简可判断;根据二次函数的增减性及取值范围可判定;将原函数化简变形可判定;写出顶点纵坐标,然后化简可判断【详解】解:,其中,=b2-4ac=-2m2-4×1×(2m-3),方程一定有两个实数根,即该函数的图象与x轴总有两个公共点,正确;若时,y随x的增大而增大,则,错误;,;当时,无论m为何值,该函数的图象必经过一个定点,正确;顶点纵坐标为:,该函数图象的顶点一定不在直线y2的上方,正确;综上可得:正确结果为;故答案为:【点睛】题目主要考查二次函数的基本性质及与一元二次方程的联系,熟练掌握运用二次函数的基本性质是解题关键4、【分析】运用待定系数法求出二次函数解析式,判断图象开口方向,求出对应的函数值,从而可判断出y的取值范围【详解】解:取(-3,0),(-2,-3),(0,-3)代入,得 解得, 函数图象开口向上,对称轴为直线,顶点坐标为(-1,-4)当时, 当时,y满足的范围是故答案为:【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解数形结合是解题的关键5、(1,2)【分析】直接根据顶点公式的特点求顶点坐标即可得答案【详解】是抛物线的顶点式,顶点坐标为(1,2)故答案为:(1,2)【点睛】本题主要考查了求抛物线的顶点坐标、对称轴及最值的方法解题的关键是熟知顶点式的特点三、解答题1、(1);(2)这一周该商场的最大利润为540000元,售价为120元;(3)【分析】(1)用待定系数法求出一次函数的解析式便可;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于150元/件若某一周该商品的销售量不少于6000件,”列出x的不等式组,求得x的取值范围,再设利润为w元,由w=(x-30)y,列出w关于x的二次函数,再根据二次函数的性质求出利润的最大值和售价;(3)根据题意列出利润w关于售价x的函数解析式,再根据函数的性质,列出m的不等式进行解答便可【详解】解:(1)设y与x的函数关系式为:y=kx+b(k0),把x=40,y=10000和x=50,y=9500代入得,解得,y=-50x+12000;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于150元/件若某一周该商品的销售量不少于6000件,”得,解得,30x120,设利润为w元,根据题意得,w=(x-30)y=(x-30)(-50x+12000)=-50x2+13500x-360000=-50(x-135)2+551250,对称轴为直线x=135,-500,当x135时,w随x的增大而增大,30x120,且x为正整数当x=120时,w取最大值为:-50×(120-135)2+551250=540000,答:这一周该商场销售这种商品获得的最大利润为540000元,售价为120元;(3)根据题意得,w=(x-30-m)(-50x+12000)=-50x2+(13500+50m)x-360000-12000m,对称轴为x=-=135+0.5m,-500,当x135+0.5m时,w随x的增大而增大,该商场这种商品售价不大于150元/件时,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大对称轴x=135+0.5m,m大于等于10,则对称轴大于等于140,由于x取整数,实际上x是二次函数的离散整数点, 只需保证x=150时利润大于x=149时即可满足要求,所以对称轴要大于149.5就可以了,故135+0.5m149.5,解得m29,10m60,29m60【点睛】本题考查了一次函数的实际应用,二次函数的实际应用,一元一次不等式组的实际应用,二次函数的性质,待定系数法,关键是读懂题意,正确列出函数解析式和不等式组2、(1)30;(2);(3)单价定为60元/千克时获得最大利润4200元【分析】(1)根据题意设有机生态水果的成本为m元/千克,进而依据周销售利润建立等量关系求解即可;(2)根据题意设,依题意代入图表数据求出k、b,进而即可求得函数关系式;(3)根据题意得,进而分析计算即可得出单价定为60元/千克时获得最大利润4200元【详解】解:(1)有机生态水果的成本为m元/千克,根据题意得:,解得:,故答案为:30 ;(2)设 依题意得:解得 (3)依题意得 当时,即单价定为60元/千克时获得最大利润4200元【点睛】本题考查一元一次方程与函数的综合运用,熟练掌握并待定系数法求一次函数的解析式以及二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键3、(1)yx2+4x+5(2)P(2,9)或(3,8)(3)Q(1,6)或(0,5)或(9,4)【分析】(1)由点A,B坐标用待定系数法可求出抛物线解析式;(2)设点P的横坐标为t,则P(t,t2+4t+5),D(t,t+5),求出S四边形APCD2t2+10t,SAOE,由题意得出方程求出t即可得出答案;(3)分EM为边和为对角线两种情况进行求解:当EM为平行四边形的边时,由EMPQ建立方程求解;当EM为对角线时,由EM与PQ互相平分建立方程组求解即可(1)将点A(0,5),B(5,0)分别代入yx2+bx+c得,二次函数的解析式为yx2+4x+5;(2)ACx轴,点A(0,5),当y5时,x2+4x+55,x10,x24,C(4,5),AC4,设直线AB的解析式为ymx+n,将A(0,5),B(5,0)分别代入ymx+n得,解得,直线AB的解析式为yx+5;设点P的横坐标为t,则P(t,t2+4t+5),D(t,t+5),PD(t2+4t+5)(t+5)t2+5t,AC4,S四边形APCDPD(t2+5t)2t2+10t,函数yx2+4x+5,当y0时,有x2+4x+50,x11,x25,E(1,0),OE1,又OA5,S四边形APCDSAOE,12,解得:t12,t23,P(2,9)或(3,8);(3)抛物线的对称轴与yx+5交于点M,M(2,3),设Q(a,a+5),P(m,m2+4m+5),若EMPQ,四边形EMPQ为平行四边形,解得或,Q(1,6)或(0,5);若EMPQ,四边形EMQP为平行四边形,同理求出Q(9,4);若EM为对角线,则,解得(不合题意舍去)或(不合题意舍去),综合以上可得出点Q的坐标为Q(1,6)或(0,5)或(9,4)【点睛】本题是二次函数综合题,主要考查了待定系数法,平行四边形的性质,四边形面积的求法,解本题的关键是求抛物线解析式,确定点Q的坐标时,分类讨论是解本题的难点4、(1)顶点坐标为(,)(2)(3)的最小值为1【分析】(1)先求出函数的对称轴,将对称轴代入二次函数解析式,求出顶点纵坐标(2)根据对称轴是否在x的取值范围的中间值的左右两侧,分成两类情况进行讨论即可(3)先明确只要使得上的最大值与最小值之差不小于1,就能找到满足条件的两点,由于不固定,故最后要找到所有中,使得最大值与最小值之差最小的那个,此时只需让最小的差值不小1即可,此时利用不等式,就可求出的取值范围,进而得到的最小值【详解】(1)解:抛物线的对称轴为直线 将代入抛物线解析式中,求得 抛物线顶点坐标为(,)(2)解:由(1)可知:抛物线的对称轴为:,且抛物线开口向上,当12时,按照对称轴在的取值范围的中间值左右两侧,分为两类情况求解抛物线的最大值,情况1:当,即时,此时:时,有最大值为7,故,解得: , ,情况2:当,即时,此时:时,有最大值为7,故,解得:,不符合题意,综上所述: (3)解:若对于任意的t,在图象G上都存在两点,且这两点纵坐标的差的绝对值不小于1,故只需要对于每一个固定的中的最大值与最小值之差都不小于1即可,对于不同的的取值范围,其取值范围上的最大值与最小值之差都不相同,需要在所有的的取值范围中找到最大值与最小值之差最小的那一个,由二次函数的性质可知:当对称轴处在 的中间位置时,即,此时的最大值与最小值之差在整个的取值中最小,此时:,有最小值为:, 时, 有最大值为:,解得: ,的最小值为1【点睛】本题主要是考查了二次函数的对称轴、动点区间求最值问题,根据题意,找到分类讨论的依据,利用二次函数的图像与性质,正确找出最大值与最小值,这是解题的关键5、(1)(2)或4;(3)0n1,7n5【分析】(1)分别求出图象G1和G2的解析式即可;(2)将Q点分别在图象G1和G2上两种情况讨论,可求t的值;结合图象,可求k的取值范围;(3)结合图象,分类讨论可求解【详解】解:(1)抛物线,顶点坐标为(2,4+n),将G1绕坐标原点旋转180°得到图象G2,图象G2的顶点坐标为(-2,-4-n),图象G2的解析式为:y=(x+2)2-4-n,图象的解析式为(2)当n=-1时,则图象G1的解析式为:,图象G2的解析式为:,若点Q(t,1)在图象G1上, 若点Q(t,1)在图象G2上,t1=-4,t2=0(舍去)如图,图象对应函数的最大值与最小值差为6n=-1当x=2时,y=3,当x=-2时,y=-3,对于图象G1,在y轴右侧,当y=3时,则,x=2(负值舍去),对于图象G2,在y轴左侧,当y=3时,则,x=-2- ,当kx2(k2)时,图象对应函数的最大值与最小值差为6,;(3)图象G1的解析式为:,图象G2的解析式为:y=(x+2)2-4-n,图象G1的顶点坐标为(2,4+n),与y轴交点为(0,n),图象G2的顶点坐标为(2,-4-n),与y轴交点为(0,-n),如图,矩形ABCD的边与图象有且只有两个公共点 解得, 如图当x=3时,3+n=3n=0矩形ABCD的边与图象有且只有两个公共点0n1 综上,矩形ABCD的边与图象有且只有两个公共点时,n的取值范围是0n1,7n5【点睛】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用数形结合思想解决问题是本题的关键

    注意事项

    本文(2022年最新精品解析北师大版九年级数学下册第二章二次函数章节训练试题(含详细解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开