2022年精品解析京改版八年级数学下册第十五章四边形单元测试试卷.docx
-
资源ID:28183057
资源大小:380.17KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析京改版八年级数学下册第十五章四边形单元测试试卷.docx
京改版八年级数学下册第十五章四边形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB9,AD,则四边形CDFE的面积是()ABCD542、如图,已知是平分线上的一点,是的中点,如果是上一个动点,则的最小值为( )ABCD3、如图,在ABC中,ABC90°,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D404、下列说法中,不正确的是( )A四个角都相等的四边形是矩形B对角线互相平分且平分每一组对角的四边形是菱形C正方形的对角线所在的直线是它的对称轴D一组对边相等,另一组对边平行的四边形是平行四边形5、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD6、平面直角坐标系内与点P关于原点对称的点的坐标是( )ABCD7、下列图形中,不是中心对称图形的是( )ABCD8、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )AA,B,C都不在B只有BC只有A,CDA,B,C9、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是( )A1,1,2,B1,1,1C1,2,2D1,1,610、一个多边形每个外角都等于36°,则这个多边形是几边形( )A7B8C9D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为_度2、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_3、在平行四边形ABCD中,若A=130°,则B=_,C=_,D=_4、若点关于原点的对称点是,则_5、点P(1,2)关于原点中心对称的点的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形中,为对角线(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若,求的度数2、如图,已知在RtABC中,ACB90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AE、DE,过点C作CFDE于点F,且DFEF (1)求证:ADCE (2)若CD5,AC6,求AEB的面积3、如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角4、如图,在等腰三角形ABC中,ABBC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F(1)求证:BCF;(2)当Ca时,判定四边形的形状并说明理由5、如图,在四边形ABCD中,ABCADC90°,E是AC的中点,连接BD,ED,EB求证:12-参考答案-一、单选题1、C【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案【详解】如图,过点F作,分别交于M、N,四边形ABCD是矩形,点E是BC的中点,F是AE中点,故选:C【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键2、C【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值【详解】解:点P是AOB平分线上的一点,PDOA,M是OP的中点,点C是OB上一个动点当时,PC的值最小,OP平分AOB,PDOA,最小值,故选C【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键3、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90°,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90°,ADE=ABC=90°,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键4、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键5、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键6、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可【详解】解:由题意,得点P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数7、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.8、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得【详解】解:如图所示:连接BD,为直角三角形,D为AC中点,覆盖半径为300 ,A、B、C三个点都被覆盖,故选:D【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键9、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键10、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:360°÷36°=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键二、填空题1、1080【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可【详解】解:正多边形的每一个外角都等于,正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°故答案为:1080【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n2)180 °(n3)和多边形的外角和等于360°是解题关键2、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为×105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键3、 【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案【详解】解:在平行四边形ABCD中,、是的邻角,是的对角, 故答案为: ,【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键4、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:由关于坐标原点的对称点为,得,解得:故答案为:【点睛】本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数5、(-1,-2)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y)据此作答【详解】解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2)故答案为:(-1,-2)【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键三、解答题1、(1)图形见解析;(2)【分析】(1)利用尺规根据题意即可完成作图;(2)结合(1)根据等腰三角形的性质和三角形外角定理可得的度数【详解】(1)如图,点E和点F即为所求;(2),ABD=68°,AEB=AEB=68°EAB=180°-68°-68°=44°,EAD=90°-44°=46°,AF平分DAE,FAE=DAE=23°,【点睛】题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键2、(1)见解析;(2)39【分析】(1)首先根据CFDE,DFEF得出CF为DE的中垂线,然后根据垂直平分线的性质得到CDCE,然后根据直角三角形斜边上的中线等于斜边的一半得到CDAD,即可证明ADCE;(2)由(1)得CDCE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算【详解】(1)证明:DFEF 点F为DE的中点 又CFDE CF为DE的中垂线CDCE又在RtABC中,ACB90°,CD是斜边AB上的中线CD=ADADCE(2)解:由(1)得CDCE=5 AB=10 在RtABC中,BC=8EB=EC+BC=13 【点睛】此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式3、(1)证明见解析;(2)【分析】(1)先证明再证明从而可得结论;(2)证明是等边三角形,再分别求解 从而可得答案.【详解】证明(1) 平行四边形ABCD中, 点E、F分别是BC、AD的中点, (2) , 是等边三角形, 四边形是平行四边形, 而 ,所以等于的2倍的角有:【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明“是等边三角形”是解(2)的关键.4、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,A=C,由旋转的性质得到A1B=AB=BC,A=A1=C,A1BD=CBC1,根据全等三角形的判定定理得到BCFBA1D;(2)由(1)可知=A=C=a,B=B=AB=BC通过证明FBC=可得 BC,利用EC=C=180°推出EC+=180° 得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形【详解】(1)证明:等腰三角形ABC旋转角a得到BD=FBC=a=A=C B=B=AB=BCBCF(ASA) (2)解:四边形为菱形理由:C=a由(1)可知=A=C=a B=B=AB=BC又 BD=FBC=a FBC=BC EC=C=180°EC+=180° BCE四边形为平行四边形又B=BC 四边形为菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键5、见解析【分析】根据直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质即可证明【详解】解:ABCADC90°,ABC和ADC是直角三角形,点E是AC的中点,EBAC,EDAC,EBED,12【点睛】本题考查了直角三角形斜边上的中线、等腰三角形的判定与性质,解决本题的关键是掌握直角三角形斜边上的中线等于斜边的一半