欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年人教版九年级数学下册第二十八章-锐角三角函数综合练习试题(含详细解析).docx

    • 资源ID:28183298       资源大小:741.82KB        全文页数:32页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年人教版九年级数学下册第二十八章-锐角三角函数综合练习试题(含详细解析).docx

    人教版九年级数学下册第二十八章-锐角三角函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC中,ABAC2,B30°,ABC绕点A逆时针旋转(0120°)得到AB'C',B'C'与BC、AC分别交于点D、点E,设CD+DEx,AEC'的面积为y,则y与x的函数图象大致为()A BC D2、在直角ABC中,AC2,则tanA的值为( )ABCD3、如图,正方形ABCD中,AB6,E为AB的中点,将ADE沿DE翻折得到FDE,延长EF交BC于G,FHBC,垂足为H,连接BF、DG以下结论:BFED;DFGDCG;FHBEAD;tanGEB;其中正确的个数是( )A4B3C2D14、如图,为测量小明家所住楼房的楼高,小明从楼底A出发先沿水平方向向左行走到达点C,再沿坡度的斜坡行走104米到达点D,在D处小明测得楼底点A处的俯角为,楼顶最高处B的仰角为,所在的直线垂直于地面,点A、B、C、D在同一平面内,则的高度约为( )米(参考数据:,)A104B106C108D1105、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是( )A2BCD6、如图,在小正方形网格中,的三个顶点均在格点上,则的值为( )ABCD7、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米8、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BHCE于F,交AC于G,交AD于H,下列说法:; 点F是GB的中点;SAHG=SABC其中正确的结论的序号是( )ABCD9、已知,在矩形中,于,设,且,则的长为( )ABCD10、如图,在ABC中,C=90°,ABC=30°,D是AC的中点,则tanDBC的值是( )A B C D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,沿AE折叠矩形纸片,使点D落在BC边的点F处已知,则的值为_2、在半径为1的O中,弦AB、AC分别是和 ,则BAC的度数是_3、如图所示,某商场要在一楼和二楼之间搭建扶梯,已知一楼与二楼之间的地面高度差为米,扶梯 的坡度,则扶梯的长度为_米4、计算:cos245°tan30°·sin60°sin245°_5、如图,正方形ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF,给出下列结论:AGD110.5;2tanAED2;SAGDSOGD;四边形AEFG是菱形;BFOF;SOGF1,则正方形ABCD的面积是128,其中正确的是_(只填写序号)三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,B30°,BC40cm,过点A作ADBC,垂足为D,ACD75°(1)求点C到AB的距离;(2)求线段AD的长度2、如图1,已知抛物线yx2+x+1与x轴交于A和B两点(点A在点B的左侧),与y轴交于点C(1)点C的坐标是 ,点B的坐标是 ;(2)M为线段BC上方抛物线上一动点,连接MC、MB,求MBC面积的最大值,并求出此时M的坐标;(3)如图2,T为线段CB上一动点,将OCT沿OT翻折得到OCT,当OCT与OBC的重叠部分为直角三角形时,求BT的长(4)如图3,动点P从点O出发沿x轴向B运动,过点P作CP的垂线交CB于D点P从O运动到B的过程中,点D运动所经过的路径总长等于 3、计算:8cos60°(3.14)0|4|(1)20214、如图,某学校新建了一座雕塑CD,小林站在距离雕塑3.5米的A处自B点看雕塑头顶D的仰角为60°,看雕塑底部C的仰角为45°,求雕塑CD的高度(最后结果精确到0.1米,参考数据:)5、如图,ABC中,ADBC,垂足是D,若BC14,AD12,求:(1)AC的值(2)sinC的值-参考答案-一、单选题1、B【分析】先证ABFACE(ASA),再证BFDCED(AAS),得出DE+DC=DE+DB=BE=x,利用锐角三角函数求出,AG=ACsin30°=1,根据三角形面积列出函数解析式是一次函数,即可得出结论【详解】解:设BC与AB交于F,ABC绕点A逆时针旋转(0120°)得到AB'C',BAF=CAE=,AB=AC=AB=AC,B=C=B=C=30°,在ABF和ACE中,ABFACE(ASA),AF=AE,AB=AC,BF=AB-AF=AC-AE=CE,在BFD和CED中,BFDCED(AAS),BD=CD,FD=ED,DE+DC=DE+DB=BE=x,过点A作AGBC于G,AB=AC,BG=CG,AC=2,cosC=,AG=ACsin30°=1EC=是一次函数,当x=0时,故选择B【点睛】本题考查等腰三角形性质,图形旋转,三角形全等判定与性质,解直角三角形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键2、B【分析】先利用勾股定理求出BC的长,然后再求tanA的值【详解】解:在RtABC中,AB=3,AC2,BC= tanA=故选:B【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中3、A【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可【详解】解:正方形ABCD中,AB=6,E为AB的中点AD=DC=BC=AB=6,AE=BE=3,A=C=ABC=90°ADE沿DE翻折得到FDEAED=FED,AD=FD=6,AE=EF=3,A=DFE=90°,BE=EF=3,DFG=C=90°,EBF=EFB,AED+FED=EBF+EFB,DEF=EFB,BFED,故结论正确;AD=DF=DC=6,DFG=C=90°,DG=DG,RtDFGRtDCG,结论正确;FHBC,ABC=90°ABFH,FHB=A=90°EBF=BFH=AED,FHBEAD,结论正确;RtDFGRtDCG,FG=CG,设FG=CG=x,则BG=6-x,EG=3+x,在RtBEG中,由勾股定理得:32+(6-x)2=(3+x)2,解得:x=2,BG=4,tanGEB=,故结论正确故选:A【点睛】本题考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强4、A【分析】根据题意作交于E,延长AC,作交于F,由坡度的定义求出DF的长,得AE的长,再解直角三角形求出DE、BE的长,即可解决问题【详解】解:如图,作交于E,延长AC,作交于F,斜坡CD的坡度为i=1:2.4,CD=104米,DF=AE=40(米),CF=96(米),,,(米),,,(米),(米).故选:A.【点睛】本题考查的是解直角三角形的应用-仰角俯角、坡度坡角问题,正确作出辅助线,构造直角三角形是解答此题的关键5、C【分析】根据网格的特点,勾股定理求得的长,进而根据勾股定理逆定理判定是直角三角形,进而根据正弦的定义求解即可【详解】解:是直角三角形,且是斜边故选C【点睛】本题考查了网格中勾股定理与勾股定理的逆定理的应用,正弦的定义,证明是直角三角形是解题的关键6、A【分析】观察题目易知ABC为直角三角形,其中AC3,BC4,求出斜边AB,根据余弦的定义即可求出【详解】解:由题知ABC为直角三角形,其中AC3,BC4,AB=5,故选:A【点睛】本题考查解直角三角形知识,熟练掌握锐角三角函数的定义并能在解直角三角形中的灵活应用是解题的关键7、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90°,A65°,AO30m,tan65°,BO30tan65°米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边8、D【分析】先证明ABHBCE,得AH=BE,则,即,再根据平行线分线段成比例定理得:即可判断;设BF=x,CF=2x,则BC=x,计算FG= 即可判断;根据等腰直角三角形得:AC=AB,根据中得:即可判断;根据,可得同高三角形面积的比,然后判断即可【详解】解:四边形ABCD是正方形,AB=BC,HAB=ABC=90°,CEBH,BFC=BCF+CBF=CBF+ABH=90°,BCF=ABH,ABHBCE,AH=BE,E是正方形ABCD边AB的中点,BE=AB,即AH/BC,故正确;设BF=x,CF=2x,则BC=x,AH=x,故不正确;四边形ABCD是正方形,AB=BC,ABC=90°,AC=AB,故正确;,故正确故选D【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键9、B【分析】根据同角的余角相等求出ADE=ACD,再根据两直线平行,内错角相等可得BAC=ACD,然后求出AC,再利用勾股定理求出BC,然后根据矩形的对边相等可得AD=BC【详解】解:DEAC,ADE+CAD=90°,ACD+CAD=90°,ACD=ADE=,矩形ABCD的对边ABCD,BAC=ACD,cos=,AC=×4=,由勾股定理得,BC=,四边形ABCD是矩形,AD=BC=故选:B【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键10、D【分析】根据正切的定义以及,设,则,结合题意求得,进而即可求得【详解】解:在ABC中,C=90°,ABC=30°,设,则, D是AC的中点,故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键二、填空题1、【解析】【分析】根据折叠的性质和锐角三角函数的概念来解答即可【详解】解:根据题意可得:在中,有,则在中, ,故故答案是:【点睛】本题考查了翻折变换,矩形的性质,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键2、15°或75°#75°或15°【解析】【分析】由题意可知半径为1,弦AB、AC分别是和 ,作OMAB,ONAC,根据垂径定理可求出AM与AN的长度,然后分别在直角三角形AOM与直角三角形AON中,利用余弦函数,可求出OAM=45°,OAN=30°,然后根据AC与AB的位置情况分两种进行讨论即可【详解】解:如图,作OMAB,ONAC;由垂径定理,可得AM=AB,AN=AC,弦AB、AC分别是、,AM=,AN=;半径为1,OA=1;cosOAM=AMOA=22,OAM=45°;同理cosOAN=ANOA=32,OAN=30°;BAC=OAM+OAN或OAM-OANBAC=75°或15°【点睛】本题主要考查垂径定理、勾股定理以及三角形函数本题综合性强,关键是画出图形,作好辅助线,利用垂径定理和直角三角形的特殊余弦值求得角的度数,注意要考虑到两种情况3、【解析】【分析】如图所示,过点C作地面的垂线,垂直为D,由题意得:,据此利用勾股定理求解即可【详解】解:如图所示,过点C作地面的垂线,垂直为D,由题意得:,故答案为:7【点睛】本题主要考查了勾股定理和坡度,正确作出辅助线,构造直角三角形是解题的关键4、#0.5【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】解:= .故答案为【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键5、【解析】【分析】由四边形ABCD是正方形,可得GADADO45°,又由折叠的性质,可求得ADG的度数,从而求得AGD;利用GAD与ADG度数求得AED度数可得;证AEGFEG得AGFG,由FGOG即可得;由折叠的性质与平行线的性质,易得AEG是等腰三角形,由AEFE、AGFG即可得证;设OFa,先求得EFG45°,从而知BFEFGFOF;由SOGF1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论【详解】解:四边形ABCD是正方形,GADADO45°,由折叠的性质可得:ADGADO22.5°,AGD180°GADADG112.5°,故错误AED180°EADADE67.5°,tanAED1,则2tanAED2,故错误;由折叠的性质可得:AEEF,EFDEAD90°,在AEG和FEG中,AEGFEG(SAS),AGFG,在RtGOF中,AGFGGO,SAGDSOGD,故错误;AGEGADADG67.5°AED,AEAG,又AEFE、AGFG,AEEFGFAG,四边形AEFG是菱形,故正确;设OFa,四边形AEFG是菱形,且AED67.5°,FEGFGE67.5°,EFG45°,又EFO90°,GFO45°,GFEFa,EFO90°,EBF45°,BFEFGFa,即BFOF,故正确;SOGF1,OG21,即a21,则a22,BFEFa,且BFE90°,BE2a,又AEEFa,ABAEBE2aa(2)a,则正方形ABCD的面积是(2)2a2(64)×2128,故正确;故答案为:【点睛】本题考查了正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用三、解答题1、(1)20cm;(2)【解析】【分析】(1)过C点作CHAB于H,如图,在RtBCH中,利用含30°的直角三角形三边的关系易得CHBC20;(2)在RtBCD中利用含30°的直角三角形三边的关系可得CH20,BHCH20,再利用三角形外角性质计算出BAC45°,则ACH为等腰直角三角形,所以AHCH20,然后利用面积法求AD【详解】解:(1)过C点作CHAB于H,如图,在RtBCH中,B30°,CHBC×4020cm,即点C到AB的距离为20cm;(2)在RtBCH中,B30°,CH20cm,BHCH20cm,ACDB+BAC,BAC75°30°45°,ACH为等腰直角三角形,AHCH20cm,AB(20+20)cm,ADBCCHAB,AD(10+10)cm【点睛】本题主要考查了含30°直角三角形的性质 、解直角三角形、三角形的外角以及三角形的面积等知识点,正确作出辅助线、构造直角三角形成为解答本题的关键2、(1)(0,1),(2,0);(2)SMBC最大值1, M(1,);(3)1或2或;(4)35【解析】【分析】(1)令y0,可求B点坐标,令x0,可求C点坐标;(2)求出直线BC的解析式为yx+1,过点M作MNx轴交直线BC于点N,设M(t,t2+t+1),则N(t,t+1),SMBC(t1)2+1,当t1时,SMBC有最大值1,M(1,);(3)分三种情况讨论:当TC'与BO垂直时,即OGT90°,CT1,CB,BT1;当OTC'90°时,CT,BT;当OC'与BC垂直时,即OHB90°,OH,CH,BH,在RtTC'H中,(TH)2TH2+(1)2,求出TH2,则BTBH+TH2;(4)设OPm,则CP,过点P作PFCB交于点F,当COPCPD时,PBm,则有m+m2,可求m,PB,CD,BD,当P点从O点运动,D点从B点开始向C点方向运动,到达COPCPD时,BD的长度达到最大值,当P点再向B点运动时,D点又向B点运动,直到D点回到B点,所以点D运动所经过的路径总长是BD长度的2倍,可求2BD35【详解】解:(1)令y0则x2+x+10,x2或x,B(2,0),令x0则y1,C(0,1),故答案为:(0,1),(2,0);(2)设直线BC的解析式为ykx+b,yx+1,如图,过点M作MNx轴交直线BC于点N,设M(t,t2+t+1),则N(t,t+1),MNt2+t+1+t1t2+2t,SMBC×2×(t2+2t)(t1)2+1,M为线段BC上方抛物线上一动点,0t2,当t1时,SMBC有最大值1,M(1,);(3)如图1,当TC'与BO垂直时,即OGT90°,TGCO,COTOTC',CTOOTC',CTOCOT,COCT,OC1,CT1,BO2,CB,BT1;如图2,当OTC'90°时,OCC'O1,COTOBC,sinCBO,CT,BT;如图3,当OC'与BC垂直时,即OHB90°,在RtOHB中,sinOBH,OH,在RtOCH中,CH,BH,OCOC'1,C'H1,CTC'T,CTCHTHTH,在RtTC'H中,C'T2TH2+C'H2,(TH)2TH2+(1)2,TH2,BTBH+TH+22;综上所述:BT的长为1或2或;(4)如图4,CPPD,CPD90°,设OPm,CP,过点P作PFCB交于点F,当COPCPD时,OCPCPD,OPPFm,sinOBC,PBm,m+m2,m,PB,CD1+m21+()2,BD,当P点从O点运动,D点从B点开始向C点方向运动,到达COPCPD时,BD的长度达到最大值,当P点再向B点运动时,D点又向B点运动,直到D点回到B点,点D运动所经过的路径总长是BD长度的2倍,2BD35,点D运动所经过的路径总长等于35,故答案为:35【点睛】本题考查了二次函数的动点运动的综合问题,对于运动型几何问题中的函数应用问题,解题时应深入理解运动图形所在的条件与环境,用运动的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化的不变量、不变关系和特殊关系,然后化“动态”为“静态”、化“变化”为“不变”,通过分析找出题中各图形的结合点,借助函数的性质予以解决 当图形(或某一事物)在运动的过程中达到最大值或最小值时,其位置必定在一个特殊的位置,这是普遍规律3、【解析】【分析】先计算特殊角三角函数值、0指数、绝对值和乘方,再加减即可【详解】解:8cos60°(3.14)0|4|(1)2021=【点睛】本题考查了特殊角三角函数值、0指数、绝对值和乘方运算,解题关键是熟记特殊角三角函数值,准确计算0指数、绝对值和乘方4、米【解析】【分析】首先分析图形:根据题意构造两个直角三角形、,再利用其公共边求得、,再根据计算即可求出答案【详解】解:在中,米,在中,米,则米故塑像的高度大约为米【点睛】本题考查解直角三角形的知识,解题的关键是要先将实际问题抽象成数学模型分别在两个不同的三角形中,借助三角函数的知识,研究角和边的关系5、(1)13;(2)【解析】【分析】(1)首先根据的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度;(2)由,代值计算即可【详解】(1)在中,;(2)在中,【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系是解题的关键

    注意事项

    本文(2022年人教版九年级数学下册第二十八章-锐角三角函数综合练习试题(含详细解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开