2022年人教版八年级数学下册第十七章-勾股定理定向练习试题(无超纲).docx
-
资源ID:28183660
资源大小:433.04KB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版八年级数学下册第十七章-勾股定理定向练习试题(无超纲).docx
人教版八年级数学下册第十七章-勾股定理定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在ABC中,C90°,AC2,点D在BC上,ADC2B,AD,则BC的长为()ABC2+D2+2、如图,在RtDFE中,两个阴影正方形的面积分别为SA36,SB100,则直角三角形DFE的另一条直角边EF的长为( )A5B6C8D103、如图,这是“赵爽弦图”,ABH,BCG,CDF,DAE是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形,如果EF1,AH3,那么AB等于( )A4B5C9D104、下列四组线段中,不可以构成直角三角形的是( )A3,4,5B2,3,4C,3,4D7,24,255、如图,ABC中,C90°,AD平分BAC交BC于点D,DEAB于E,若AB10cm,AC6cm,则BED周长为( )A10cmB12cmC14cmD16cm6、满足下列条件的ABC不是直角三角形的是()ABC1,AC2,ABBCBC:AC:AB3:4:5DA:B:C3:4:57、以下列各组线段为边作三角形,能构成直角三角形的是( )A2,3,5B6,8,9C5,12,13D6,12,138、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米9、如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是,内壁高若这支铅笔长为,则这只铅笔在笔筒外面部分长度不可能的是( )ABCD10、在ABC中,C90°,BC2,sinA,则边AC的长是()AB3CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,CACB,ACB90°,E为BC边上一动点(不与点B、点C重合),连接AE并延长,在AE延长线上取点D,使CDCA,连接CD,过点C作CFAD交AD于点F,交DB的延长线于点G,若CD3,BG1,则DB_2、如图,在ABC中,C90°,AC12cm,BC16cm,D、E分别是边BC、AB上的任意一点,把ABC沿着直线DE折叠,顶点B的对应点是B,如果点B和顶点A重合,则CD_cm3、如图,四边形中,于点若BD=1,则线段的长为_4、如图,已知ABO为等腰三角形,且OAAB5,B(6,0),则点A的坐标为_5、一个直角三角形的两边长为3和6,则第三边的边长是_三、解答题(5小题,每小题10分,共计50分)1、如图,正方形网格中,每个小正方形的边长为1,求网格上的三角形ABC的面积和周长2、已知ABC中,C=90°,BC=3cm,BD=12cm,AD=13cm,ABC的面积是6cm2(1)求AB的长度;(2)求ABD的面积3、图,图均为4×4的正方形网格,每个小正方形的顶点称为格点,且每个小正方形的边长均为1图中点A,B,C均在格点上,请分别在给定的网格中画出格点M,使点M满足相应的要求(1)在图中画出格点M,连结MA,使MA5(2)在图中画出格点M,连结MA,MB,MC,使MAMBMC4、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标 5、已知,如图,ACB和ECD都是等腰直角三角形,ACB=ECD=90°,点D在AB边上 (1)图中哪一对三角形全等?说明理由; (2)若BD=9,AD=12,求DE的长-参考答案-一、单选题1、B【分析】根据ADC2B,ADCB+BAD判断出DBDA,根据勾股定理求出DC的长,从而求出BC的长【详解】解:ADC2B,ADCB+BAD,BDAB,BDAD,在RtADC中,C90°,DC,BCBD+DC故选:B【点睛】本题考查了等角对等边,勾股定理,求得是解题的关键2、C【分析】根据正方形面积公式可得,然后利用勾股定理求解即可【详解】解:由题意得:,DEF是直角三角形,且DEF=90°,故选C【点睛】本题主要考查了以直角三角形三边为边长的图形面积,解题的关键在于能够熟练掌握勾股定理3、B【分析】根据正方形的性质得到HGEF1,AHB=GHE=90°,再由全等三角形的性质得BGAH3, 则BH4,最后根据勾股定理求解即可【详解】解:四边形EFGH是正方形,EF1,HGEF1,AHB=GHE=90°,AH3,ABH、BCG,CDF和DAE是四个全等的直角三角形,BGAH3, BH4,在直角三角形AHB中,由勾股定理得到:,故选B【点睛】此题考查了正方形的性质,勾股定理和全等三角形的性质,解题的关键是得到直角三角形ABH的两直角边的长度4、B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可【详解】解:A. 3+4=9+16=25=5,能构成直角三角形,故不符合题意;B. 2+3=4+9=134,不能构成直角三角形,故符合题意;C. ()+3=7+9=16=42,能构成直角三角形,故不符合题意;D. 7+24=49+576=625=252,能构成直角三角形,故不符合题意故选B【点睛】本题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计5、B【分析】根据平分线的性质得出,由定理证明,得出,即可求出,由勾股定理算出,,计算即可得出答案【详解】,平分,在与中,在中,故选:B【点睛】本题考查角平分线的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识点是解题的关键6、D【分析】根据勾股定理的逆定理可判定A、C,由三角形内角和可判定B、D,可得出答案【详解】A、当BC1,AC2,AB时,满足BC2+AB2=1+3=4=AC2,所以ABC为直角三角形;B、当A:B:C=1:2:3时,可设A=x°,B=2x°,C=3x°,由三角形内角和定理可得x+2x+3x=180,解得x=30°,所以A=30°,B=60°,C=90°,所以ABC为直角三角形,C、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以ABC为直角三角形;D、当A:B:C=3:4:5时,可设A=3x°,B=4x°,C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以A=45°,B=60°,C=75°,所以ABC为锐角三角形,故选:D【点睛】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有勾股定理的逆定理,有一个角为直角的三角形7、C【分析】根据两小边的平方和是否等于最长边的平方进行判断是否是直角三角形【详解】A、选项:,不能构成直角三角形,故本选项不符合题意;B、选项:,不能构成直角三角形,故本选项不符合题意;C、选项:,能构成直角三角形,故本选项符合题意;D、选项:,不能构成直角三角形,故本选项不符合题意;故选:【点睛】考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可8、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理9、D【分析】当铅笔不垂直于底面放置时,利用勾股定理可求得铅笔露出笔筒部分的最小长度;考虑当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度是露出的最大长度;从而可确定答案【详解】当铅笔不垂直于底面放置时,由勾股定理得:,则铅笔在笔筒外部分的最小长度为:1815=3(cm);当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度为1812=6(cm),即铅笔在笔筒外面最长不超过6cm,从而铅笔露出笔筒部分的长度不短于3cm,不超过6cm所以前三项均符合题意,只有D选项不符合题意;故选:D【点睛】本题考查了勾股定理的实际应用,关键是把实际问题抽象成数学问题,分别考虑两种极端情况,问题即解决10、A【分析】先根据BC2,sinA求出AB的长度,再利用勾股定理即可求解【详解】解:sinA,BC2,AB3,AC,故选:A【点睛】本题考查正弦的定义、勾股定理等知识,是重要考点,难度较小,掌握相关知识是解题关键二、填空题1、【分析】连接AG,设DCBx,根据等腰三角形的性质和三角形内角和定理求出ADB45°,然后根据等腰三角形三线合一性质得出DFAF,然后根据垂直平分线的性质得出GADG,进一步得到是等腰直角三角形,在中,根据勾股定理求出AB的长度,设BDm,然后在中,利用勾股定理即可求出DB的长度【详解】解:如图,连接AG设DCBxCACBCD,CADCDA(180°90°x)45°x,CDBCBD(180°x)90°x,ADBCDBCDA90°x(45°x)45°,CGAD,CACD,DFAF,GADG,GADGDA45°,AGB90°,设BDm,则AGDGm+1,在中,AB3,在中,即(3)212+(m+1)2,解得m1故答案为:1【点睛】此题考查了等腰三角形的性质,勾股定理,垂直平分线的性质以及三角形内角和定理等知识,解题的关键是根据题意连接AG,得出是等腰直角三角形2、【分析】设CDxcm,则BD(16x)cm;根据勾股定理列出关于x的方程,解方程即可解决问题【详解】解:设CDxcm,则BD(16x)cm,由折叠得:ADBD16x,在RtACD中,由勾股定理得:CD2+AC2AD2,x2+122(16x)2,解得:x,即CD(cm)故答案为:【点睛】该题主要考查了翻折变换的性质;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答3、【分析】过点C作CEBD,交BD的延长线于E,证明A、C、D、B四点共圆,求出DCE=CDE=45°,得到CE=DE=4,利用勾股定理求出BC,即可得到答案【详解】解:过点C作CEBD,交BD的延长线于E, ,ABC=CAB=45°,ADB=,A、C、D、B四点共圆,ADC=ABC=45°,CDE=45°,DCE=CDE=45°,CE=DE,CE=DE=4,BD=1,BE=5,故答案为:【点睛】此题考查了四点共圆的证明,勾股定理,等腰直角三角形的判定及性质,能正确证得A、C、D、B四点共圆,求出DCE=CDE=45°是解题的关键4、(3,4)【分析】过点A作 轴于点C,轴于点D,根据ABAO,ACBO,得OC,在RtAOC中,由勾股定理得:AC4,即可求出点A的坐标【详解】解:如图,过点A作 轴于点C,轴于点D,B(6,0),OB6,ABAO,ACBO,OC,在RtAOC中,由勾股定理得:AC,A(3,4)故答案为:(3,4)【点睛】本题主要考查了坐标与图形,等腰三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键5、或【分析】由于这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答【详解】解:分两种情况:(1)3、6都为直角边,由勾股定理得,斜边为 ;(2)3为直角边,6为斜边,由勾股定理得,直角边为 故答案为:或【点睛】此题考查的知识点是勾股定理,关键要明确本题利用了分类讨论思想,是数学中常用的一种解题方法三、解答题1、面积是7,周长是【分析】利用面积和差和勾股定理求解即可【详解】解:ABC的面积=;由勾股定理得:,所以ABC的周长为【点睛】本题考查了勾股定理,解题关键是熟练运用勾股定理求线段长2、(1)(2)【分析】(1)根据直角三角形ABC的面积求得AC,再根据勾股定理即可求得AB的长;(2)根据勾股定理的逆定理证明ABD是直角三角形,即可求解【详解】解:(1)C90°(2)【点睛】此题主要是考查了勾股定理及其逆定理注意:直角三角形的面积等于两条直角边的乘积的一半3、(1)见解析;(2)见解析【分析】(1)根据勾股定理解答;(2)连接AB、BC,分别作其垂直平分线,两平分线交点即为所求点M【详解】解:如图,由勾股定理得;(2)如图,点M即为所求【点睛】此题考查了网格中作图,勾股定理的应用,线段垂直平分线的性质,正确理解线段垂直平分线的性质是解题的关键4、(1)见解析;(2)(0,)【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标【详解】解:(1)如图,点P即为所求;(2)A的坐标(0,6),点B的坐标(3,0),OA=6,OB=3,PA=PB=OA-OP=6-OP,PB2-OP2=OB2,(6-OP)2-OP2=32,解得OP=,点P的坐标为(0,)【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质5、(1)ACEBCD,理由见解析;(2)15【分析】(1)证明再结合从而可得结论;(2)由全等三角形的性质证明 再利用勾股定理可得答案.【详解】解:(1)ACEBCD,理由如下: ACB和ECD都是等腰直角三角形,ACB=ECD=90°, (2) 【点睛】本题考查的是等腰直角三角形的性质,全等三角形的判定与性质,勾股定理的应用,证明是解本题的关键.