欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年沪科版九年级数学下册第24章圆章节测试试卷(含答案解析).docx

    • 资源ID:28183720       资源大小:1.20MB        全文页数:33页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年沪科版九年级数学下册第24章圆章节测试试卷(含答案解析).docx

    沪科版九年级数学下册第24章圆章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B,C均在O上,连接OA,OB,AC,BC,如果OAOB,那么C的度数为( )A22.5°B45°C90°D67.5°2、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个3、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对4、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20°B25°C30°D40°5、下列图形中,是中心对称图形也是轴对称图形的是()ABCD6、如图,都是上的点,垂足为,若,则的度数为( )ABCD7、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD8、如图,AB,CD是O的弦,且,若,则的度数为( )A30°B40°C45°D60°9、如图,是ABC的外接圆,已知,则的大小为( )A55°B60°C65°D75°10、计算半径为1,圆心角为的扇形面积为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为_2、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:O(纸片),其半径为求作:一个正方形,使其面积等于O的面积作法:如图1,取O的直径,作射线,过点作的垂线;如图2,以点为圆心,为半径画弧交直线于点;将纸片O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;取的中点,以点为圆心,为半径画半圆,交射线于点;以为边作正方形正方形即为所求根据上述作图步骤,完成下列填空:(1)由可知,直线为O的切线,其依据是_(2)由可知,则_,_(用含的代数式表示)(3)连接,在Rt中,根据,可计算得_(用含的代数式表示)由此可得3、在平面直角坐标系中,A(1,0),B(2,0),OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则AOE面积的最大值为_4、两直角边分别为6、8,那么的内接圆的半径为_5、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正_边形三、解答题(5小题,每小题10分,共计50分)1、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分(1)求证:是切线;(2)若,求的半径和的长2、如图,已知线段,点A在线段上,且,点B为线段上的一个动点以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和若旋转后M、N两点重合成一点C(即构成),设(1)的周长为_;(2)若,求x的值3、如图,ABC内接于O,D是O的直径AB的延长线上一点,DCBOAC过圆心O作BC的平行线交DC的延长线于点E(1)求证:CD是O的切线;(2)若CD4,CE6,求O的半径及tanOCB的值4、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接(1)如图1,当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值5、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中(1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为_度;(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部试探究与之间满足什么等量关系,并说明理由;(3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值-参考答案-一、单选题1、B【分析】根据同弧所对的圆周角是圆心角的一半即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键2、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键3、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键4、B【分析】连接OA,如图,根据切线的性质得PAO=90°,再利用互余计算出AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90°,P=40°,AOP=50°,OA=OB,B=OAB,AOP=B+OAB,B=AOP=×50°=25°故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系5、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意故选:C【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合6、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC,和分别是所对的圆周角和圆心角,故选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键7、D【详解】解:不是轴对称图形,也不是中心对称图形,故本选项不符合题意;不是轴对称图形,是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键9、C【分析】由OA=OB,求出AOB=130°,根据圆周角定理求出的度数【详解】解:OA=OB,BAO=AOB=130°=AOB=65°故选:C【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半10、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键二、填空题1、-2【分析】由图可知,当CNAB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解【详解】由图可知,当CNAB且C、M、N三点共线时,长度最小直线AB的解析式为当x=0时,y=5,当y=0时,x=5B(0,5),A(5,0)AO=BO,AOB是等腰直角三角形BAO=90°当CNAB时,则ACN是等腰直角三角形CN=ANCAC=7AC2=CN2+AN2=2CN2CN=当 C、M、N三点共线时,长度最小即MN=CN-CM=-2故答案为:-2【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解2、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3) 【分析】(1)根据切线的定义判断即可(2)由=AC+,计算即可;根据计算即可(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可【详解】解:(1)O的直径,作射线,过点作的垂线,经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线; (2)根据题意,得AC=r,=r,=AC+=r+r,=;,MA=-r=,故答案为:,; (3)如图,连接ME,根据勾股定理,得=; 故答案为:【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键3、【分析】过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可【详解】解:过点作轴,交于点,A(1,0),B(2,0),D为线段BC的中点,轴,设点到轴的距离为,则AOE的边上的高,作的外接圆,则当点位于图中处时,最大,因为,为等边三角形,,,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键4、5【分析】直角三角形外接圆的直径是斜边的长【详解】解:由勾股定理得:AB=10,ACB=90°,AB是O的直径,这个三角形的外接圆直径是10,这个三角形的外接圆半径长为5,故答案为:5【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等5、六【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数【详解】解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:半径与边长相等,这个三角形是等边三角形,正多边形的边数:360°÷60°6,这个正多边形是正六边形故答案为:六【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键三、解答题1、(1)证明见解析(2)【分析】(1)连接OA,根据已知条件证明OAAE即可解决问题;(2)取CD中点F,连接OF,根据垂径定理可得OFCD,所以四边形AEFO是矩形,利用勾股定理即可求出结果(1)证明:如图,连接OA,AECD,DAE+ADE=90°DA平分BDE,ADE=ADO,又OA=OD,OAD=ADO,DAE+OAD=90°,OAAE,AE是O切线;(2)解:如图,取CD中点F,连接OF,OFCD于点F四边形AEFO是矩形,CD=6,DF=FC=3在RtOFD中,OF=AE=4,在RtAED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,AD的长是【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质2、(1)4(2)【分析】(1)由旋转知:AM=AC=1,BN=BC,将ABC的周长转化为MN;(2)由+=270°,得ACB=90°,利用勾股定理列方程即可(1)解:由旋转知:AM=AC=1,BN=BC=3-x,ABC的周长为:AC+AB+BC=MN=4;故答案为:4;(2)解:+=270°,CAB+CBA=360°-270°=90°,ACB=180°-(CAB+CBA)=180°-90°=90°,AC2+BC2=AB2,即12+(3-x)2=x2,解得【点睛】本题主要考查了旋转的性质,勾股定理等知识,证明ACB=90°是解题的关键3、(1)见解析(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,OCA=DCB,由圆周角定理可得ACB=90°,进而得到OCD=90°,即可得出结论;(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在RtOCD中,根据勾股定理求出x=1,即O的半径为3,由平行线的性质得到OCB=EOC,在RtOCE中,可求得tanEOC=2,即tanOCB=2(1)证明:OAOC,OACOCA,DCBOAC, OCADCB, AB是O的直径,ACB90°,OCA+OCB90°,DCB+OCB90°,即OCD90°,OCDC, OC是O的半径,CD是O的切线;(2)OEBC,CD=4,CE=6,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,OCDC,OCD是直角三角形,在RtOCD中,OC2+CD2=OD2,(3x)2+42=(5x)2,解得,x=1,OC=3x=3,即O的半径为3,BCOE,OCB=EOC,在RtOCE中,tanEOC=,tanOCB=tanEOC=2【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键4、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120°,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120°,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120°,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键5、(1)135°(2)MOP-NOQ=30°,理由见解析(3)s或s【分析】(1)先根据OP平分得到PON,然后求出BOP即可;(2)先根据题意可得MOP=90°-POQ, NOQ=60°-POQ,然后作差即可;(3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可(1)解:OP平分MONPON=MON=45°三角板OPQ旋转的角:BOP=PON+NOB=135°故答案是135°(2)解:MOP-NOQ=30°,理由如下:MON=90°,POQ=60°MOP=90°-POQ, NOQ=60°-POQ,MOP-NOQ=90°-POQ -(60°-POQ)=30°(3)解:射线OC平分,射线OD平分NOC=45°,POD=30°选择前OC与OD的夹角为COD=NOC+NOP+POD=165°OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°此时OC与OE的夹角165-(180-45-2×33)=96°OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒设在OC与OD第二次相遇前,当时,需要旋转时间为t当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s然后,都是每隔360÷(5°-2°)=120秒,出现一次这种现象C、D第二次相遇需要时间72秒在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s【点睛】本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键

    注意事项

    本文(2022年沪科版九年级数学下册第24章圆章节测试试卷(含答案解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开