2022年最新人教版初中数学七年级下册第七章平面直角坐标系章节训练试卷.docx
-
资源ID:28184105
资源大小:378.87KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新人教版初中数学七年级下册第七章平面直角坐标系章节训练试卷.docx
初中数学七年级下册第七章平面直角坐标系章节训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、已知点P位于第二象限,则点P的坐标可能是( )A(2,0)B(0,4)C(2,3)D(2,3)2、岚山根袁家村·运城印象全民健身游乐场,位处运城市黄金旅游路线上,南靠中条山,东临九龙山,西临凤凰谷和死海景区,是运城盐湖区全域旅游中项目最全,规模最大的标志性综合游乐场(图1)若利用网格(图2)建立适当的平面直角坐标系,表示冲浪乐园的点的坐标为,表示特色小吃米线的坐标为,那么儿童游乐园所在的位置的坐标应是( )ABCD3、若点在x轴上,则点A到原点的距离为( )A5BC0D4、根据下列表述,不能确定具体位置的是( )A电影院一层的3排4座B太原市解放路85号C南偏西D东经,北纬5、在平面直角坐标系中,点在( )A轴正半轴上B轴负半轴上C轴正半轴上D轴负半轴上6、点P(3+a,a+1)在x轴上,则点P坐标为()A(2,0)B(0,2)C(0,2)D(2,0)7、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(1,1),第四次向右跳动5 个单位至点A4(3,2),依此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )A(2020,1010)B(1011,1010)C(1011,1010)D(2020,1010)8、在平面直角坐标系中,点(-5,3)位于( )A第一象限B第二象限C第三象限D第四象限9、已知点P(m3,2m4)在x轴上,那么点P的坐标为()A(1,0)B(1,0)C(2,0)D(2,0)10、在平面直角坐标系中,若点与点之间的距离是5,则的值是( )A4B6C4或6D4或6二、填空题(5小题,每小题4分,共计20分)1、平面直角坐标系中,已知点,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为_2、如图,若实验楼的坐标是(1,2),图书馆的坐标是(1,3),则教学楼的坐标是 _3、中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点,“马”位于点,则“兵”的坐标为_4、下图是小明、小刚、小红做课间操时的位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,那么小红的位置可表示为_5、已知直线轴,A点的坐标为,并且线段,则点B的坐标为_;三、解答题(5小题,每小题10分,共计50分)1、如图是由边长为2的六个等边三角形组成的正六边形,建立适当的直角坐标系,写出各顶点的坐标2、在平面直角坐标系中,描出下列各点A(4,3),B(2,3),C(4,1),D(2,2)3、如图所示,在平面直角坐标系中,在ABC中,OA2,OB4,点C的坐标为(0,3)(1)求A,B两点坐标及;(2)若点M在x轴上,且,试求点M的坐标(3)若点D是第一象限的点,且满足CBD是以BC为直角边的等腰直角三角形,请直接写出满足条件的点D的坐标4、如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a2|+0和0;(1)求a、b、c的值;(2)如果在第二象限内有一点p(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由5、如图,把ABC向上平移4个单位,再向右平移2个单位长度得A1B1C1,解答下列各题:(1)在图上画出A1B1C1;(2)写出点A1、B1、C1的坐标;(3)A1B1C1的面积是_-参考答案-一、单选题1、C【分析】根据第二象限的点横坐标为负,纵坐标为正进行判断即可【详解】解:A. (2,0)在x轴上;B. (0,4)在y轴上;C. (2,3)在第二象限;D. (2,3)在第四象限;故选:C【点睛】本题考查了象限内点的坐标的特征,解题关键是明确不同象限内点的符号特征2、C【分析】根据浪乐园的点的坐标为,特色小吃米线的坐标为建立直角坐标系即可求解【详解】解:根据浪乐园的点的坐标为,表示特色小吃米线的坐标为建立平面直角坐标系,得,儿童游乐园所在的位置的坐标应是(-6,-2)故选:C【点睛】本题考查平面内点的坐标特点;能够根据已知的点确定原点的位置,建立正确的平面直角坐标系是解题的关键3、A【分析】根据x轴上点的纵坐标为0列式求出a,从而得到点A的坐标,然后解答即可【详解】解:点A(a,a+5)在x轴上,a+5=0,解得a=-5,所以,点A的坐标为(-5,0),所以,点A到原点的距离为5故选:A【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键4、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西,不能确定具体位置,故该选项符合题意; D. 东经,北纬,能确定具体位置,故该选项不符合题意;故选C【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键5、B【分析】依据坐标轴上的点的坐标特征即可求解【详解】解:点(,),纵坐标为点(,)在x轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为,y轴上点的横坐标为6、A【分析】根据x轴上点的纵坐标为0列式计算求出a的值,然后求解即可【详解】解:点P(3+a,a+1)在x轴上,a+1=0,a=-1,3+a =3-1=2,点P的坐标为(2,0)故选:A【点睛】本题考查了点的坐标,主要利用了x轴上点的纵坐标为0的特点7、C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),第2020次跳动至点的坐标是(1010+1,1010)即(1011,1010)故选C【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键8、B【分析】根据各象限内点的坐标特征解答第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)【详解】解:由50,30得点A(-5,3)在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)9、B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可【详解】解:点P(m3,2m4)在x轴上,2m40,解得:m2,m3231,点P的坐标为(1,0)故选:B【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键10、D【分析】根据纵坐标相同的点平行于x轴,再分点N在点M的左边和右边两种情况讨论求解【详解】解:点M(1,3)与点N(x,3)的纵坐标都是3,MNx轴,当点N在点M的左边时,x156,当点N在点M的右边时,x154,综上所述,x的值是6或4,故选:D【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论二、填空题1、或【解析】【分析】根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可【详解】解:点,且ABx轴,y=2,点到轴的距离是到轴距离的2倍,B(-4,2)或(4,2)故答案为(-4,2)或(4,2)【点睛】本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键2、【解析】【分析】根据实验楼的坐标是(1,2),图书馆的坐标是(1,3),确定原点的位置,画出平面直角坐标系,即可求出教学楼的坐标【详解】解:实验楼的坐标是(1,2),图书馆的坐标是(1,3),如图所示,建立平面直角坐标系,教学楼的坐标为故答案为:【点睛】此题考查了坐标确定位置,解题的关键是正确得出原点的位置3、(-2,1)【解析】【分析】根据已知点坐标确定直角坐标系,由此得到答案【详解】解:根据题意建立直角坐标系,如图:“兵”的坐标为(2,1),故答案为:(-2,1)【点睛】此题考查直角坐标系中点的坐标,根据坐标确定直角坐标系,根据点的位置得到点的坐标4、(-1,3)【解析】【分析】先根据小明和小刚的位置确定直角坐标系,然后确定小红的位置即可【详解】解:根据小明和小刚的位置坐标可建立如图平面直角坐标系由上图可知小红的位置坐标为(-1,3)故填(-1,3)【点睛】本题主要考查了运用类比法确定点的坐标以及平面直角坐标系的应用,根据已知条件建立平面直角坐标系成为解答本题的关键5、或#(2,-1)或(2,3)【解析】【分析】根据直线轴,可得点 两点的横坐标相同,然后分两种情况:当点 在点的下方时和当点 在点的上方时,解答,即可求解【详解】解:直线轴,点 两点的横坐标相同,A点的坐标为,点 的横坐标为2,当点 在点的下方时,点 的纵坐标为 ,此时点B的坐标为 ;当点 在点的上方时,点 的纵坐标为 ,此时点B的坐标为 ;点B的坐标为或 故答案为:或【点睛】本题主要考查了平行于坐标轴的点坐标的特征,利用分类讨论的思想解答是解题的关键三、解答题1、建立平面直角坐标系见解析,六个顶点的坐标分别为,【解析】【分析】首先,根据题意以正六边形的中心为坐标原点,一条对角线所在的直线为x轴,建立平面直角坐标系;再根据正六边形的性质,写出各顶点的坐标即可.【详解】如果以正六边形的中心为原点,建立如图所示的平面直角坐标系,那么六个顶点的坐标分别为,【点睛】通过此题的解答,主要是考查图形与坐标的知识;根据正六边形的性质,以正六边形的中心为坐标原点,一条对角线所在的直线为x轴,建立平面直角坐标系,就可以写出各顶点的坐标.2、见解析【解析】【分析】根据平面直角坐标系以及有序数对的定义找出各点的位置即可得解【详解】解:因为点A的坐标是(4,3),所以先在x轴上找到坐标是4的点M,再在y轴上找到坐标是3的点N然后由点M作x轴的垂线,由点N作y轴的垂线,过两条垂线的交点就是点A,同理可描出点B、C、D所以,点A、B、C、D在直角坐标系的位置如图所示【点睛】本题考查了平面直角坐标系,比较简单,熟练掌握平面直角坐标系是解题的关键3、(1)A(-2,0),B(4,0),(2)M(2,0)或(-6,0)(3)D(3,7)或(7,4)【解析】【分析】(1)根据题中的条件,得出点A和点B的坐标,ABC的底和高,进而求出面积;(2)根据题中两个三角形的面积关系,求出ACM的面积,求出底,进而求出M的坐标;(3)分情况讨论,根据题中的条件得出线段的关系,求出点D的坐标【详解】(1)OA=2,OB=4,且A在原点左侧,B在原点右侧,A(-2,0),B(4,0),C(0,3),OC=3,;(2)设M的坐标为(m,0),则AM=,解得m=2或m=-6,M点的坐标是(2,0)或(-6,0);(3)如图,符合条件的D点有两个,CBO,OE=OB+BE=7,BCO,CF=BO=4,OF=4+3=7,综上所述,D点坐标是(3,7)或(7,4)【点睛】本题考查了函数的基本概念,根据点的坐标得出线段的长度,最后一问需要分情况讨论,虽然难度不大,但是比较繁琐,依据图形,数形结合有利于解决问题4、(1)a2,b3,c4;(2)3m;(3)存在,点P(3,)【解析】【分析】(1)根据非负数的性质,即可解答;(2)四边形ABOP的面积APO的面积+AOB的面积,即可解答;(3)存在,根据面积相等求出m的值,即可解答【详解】解:(1)由已知|a2|+0和0可得:a20,b30,c40,解得:a2,b3,c4;(2)a2,b3,c4,A(0,2),B(3,0),C(3,4),OA2,OB3,×2×33,×2×(m)m,+3+(m)3m(3)存在,×4×36,,3m6,解得m3,存在点P(3,),使【点睛】本题考查了坐标与图形性质,实数的非负性,熟练掌握实数的非负性,灵活运用分割法求面积是解题的关键5、(1)见解析;(2)A1、B1、C1的坐标分别为(0,6),(-1,2),(5,2);(3)12【解析】【分析】(1)把ABC的各顶点向上平移4个单位,再向右平移2个单位,顺次连接各顶点即为A1B1C1; (2)利用各象限点的坐标特征写出点A1、B1、C1的坐标;(3)根据三角形面积公式求解【详解】解:(1)如图,A1B1C1为所作;(2)点A1、B1、C1的坐标分别为(0,6),(-1,2),(5,2);(3)A1B1C1的面积=×6×4=12,故答案为:12【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形