2022年最新沪科版九年级数学下册第26章概率初步课时练习试题(含详解).docx
-
资源ID:28185549
资源大小:191.49KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新沪科版九年级数学下册第26章概率初步课时练习试题(含详解).docx
沪科版九年级数学下册第26章概率初步课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )A0.560B0.580C0.600D0.6202、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是()A1B1CD13、 “翻开数学书,恰好翻到第16页”,这个事件是( )A随机事件B必然事件C不可能事件D确定事件4、下列说法正确的是()A调查“行云二号”各零部件的质量适宜采用抽样调查方式B5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定5、下列成语描述的事件为随机事件的是()A偷天换日B水涨船高C守株待兔D旭日东升6、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )ABCD7、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是()ABCD18、下列事件中,属于随机事件的是( )A用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形B用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形C如果一个三角形有两个角相等,那么两个角所对的边也相等D有两组对应边和一组对应角分别相等的两个三角形全等9、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().A B C D110、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、佳禾同学2021年10月的某一天去电影院看电影长津湖,“买了一张电影票座位号是偶数”属于 _(填“必然事件”、“随机事件”或“不可能事件”)2、某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是 _3、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是_4、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_5、某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以下”的频率通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是_(结果保留小数点后一位)三、解答题(5小题,每小题10分,共计50分)1、一只不透明的袋子中装有三个质地、大小都相同的小球,球面上分别标有数字-1、2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点M的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点M的纵坐标(1)用树状图或列表等方法,列出所有可能出现的结果;(2)求事件A“点M落在第二象限”的概率P(A)2、从2021年开始,重庆市新高考采用“”模式:“3”指全国统考科目,即:语文、数学、外语三个学科为必选科目;“1”为首选科目,即:物理、历史这2个学科中任选1科,且必须选1科;“2”为再选科目,即:化学、生物、思想政治、地理这4个学科中任选2科,且必须选2科小红在高一上期期末结束后,需要选择高考科目(1)小红在“首选科目”中,选择历史学科的概率是_(2)用列表法或画树状图法,求小红在“再选科目”中选择思想政治和地理这两门学科的概率3、口袋装有3只形状大小一样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由4、从长为2cm,3cm,4cm,5cm的4条线段中随机取出3条线段,问随机取出的3条线段能围成一个三角形的概率是多少?5、放假期间,小明和小华准备到白马湖度假区(记为A)、金湖水上森林公园(记为B)、盱眙铁山寺国家森林公园(记为C)的其中一个景点去游览,他们各自在这三个景点中任选一个,每个景点都被选中的可能性相同(1)小明选择去白马湖度假区的概率是 (2)用树状图或列表的方法求小明和小华分别去不同景点游览的概率-参考答案-一、单选题1、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.2、A【分析】设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可【详解】解:如图所示,设正方形ABCD的边长为a,四边形ABCD是正方形,C=90°, ,石子落在阴影部分的概率是,故选A【点睛】本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比3、A【分析】随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,根据定义逐一判断即可.【详解】解:“翻开数学书,恰好翻到第16页”,这个事件是随机事件;故选A【点睛】本题考查的是确定事件与随机事件的概念,确定事件又分为必然事件与不可能事件,掌握“随机事件的概念”是解本题的关键.4、B【分析】分别对各个选项进行判断,即可得出结论【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键5、C【分析】根据随机事件的定义:在一定条件下,可能发生,也可能不发生的事件,叫做随机事件,进行求解即可【详解】解:A、偷天换日,是不可能发生的,不是随机事件,不符合题意;B、水涨必定船高,是必然会发生,不是随机事件,不符合题意;C、守株待兔,可能发生,也可能不发生,是随机事件,符合题意;D、旭日东升,是必然会发生的,不是随机事件,不符合题意;故选C【点睛】本题主要考查了随机事件的定义,熟知定义是解题的关键6、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案【详解】解:抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,正面都朝上的概率是: .故选A【点睛】本题考查了列举法求概率的知识此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比7、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;则P(中心对称图形);故选:C【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键8、D【分析】根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项【详解】A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确故选:D【点睛】本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键9、C【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率本题球的总数为1+2=3,红球的数目为1【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=故选:C【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=10、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色的概率为故选:B【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色小立方体的个数是解题关键二、填空题1、随机事件【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】“买了一张电影票座位号是偶数”属于随机事件故答案为:随机事件【点睛】本题考查了随机事件的定义,熟悉定义是解题的关键2、【分析】先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.【详解】解:列表如下: 所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,所以所选代表恰好为1名女生和1名男生的概率是: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或列表的方法”是解本题的关键.3、【分析】根据概率的计算公式计算【详解】一枚质地均匀的正方体骰子有6种等可能性,朝上一面的点数是“5”的概率是,故答案为:【点睛】本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键4、【分析】先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可【详解】解:记红球为,白球为,列表得:一共有12种情况,摸到两个都是红球有2种,P(两个球都是红球),故答案是【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件5、0.8【分析】重复试验次数越多,其频率越能估计概率,求出射击1000次时的频率即可【详解】解:由题意可知射击1000次时,运动员射击一次时“射中9环以上”的频率为用频率估计概率为0.801,保留小数点后一位可知概率值为0.8故答案为:0.8【点睛】本题考查了概率解题的关键在于明确频率估计概率时要在重复试验次数尽可能多的情况下三、解答题1、(1)树状图见解析,(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)【分析】(1)根据题意画出树状图,并列出所有可能出现的结果;(2)根据(1)的树状图求事件A“点M落在第二象限”的概率P(A)【详解】解:(1)可画树状图如下:由此可知点M的坐标有以下六种等可能性:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2) (2)上面六种等可能性中第二象限的点M为(1,2)、(1,3)两种,事件A“点M落在第二象限”的概率为P(A)=【点睛】本题考查了树状图法求概率,第二象限点的坐标特征,掌握树状图法求概率是解题的关键2、(1)(2)【分析】(1)根据概率的公式计算可得答案;(2)画树状图,共有12个等可能的结果,该同学恰好选中思想政治和地理化两科的结果有2个,再由概率公式求解即可(1)解:选择物理、历史共有2中等可能结果,选择历史学科的结果有1种,所以选择历史学科的概率是;(2)假设A表示化学、B表示生物、C表示思想政治、D表示地理,画树状图如下图:共有12个等可能的结果,该同学恰好选中思想政治和地理的结果有2个,所以该同学恰好选中思想政治和地理的概率为【点睛】此题考查了概率的求法,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,还考查了用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,做题的关键是掌握概率的求法3、这个游戏对双方是不公平的,理由见解析【分析】首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可【详解】解:这个游戏对双方是不公平的如图,一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平【点睛】本题考查的是游戏的公平性解决本题需要正确画出树状图进行解题用到的知识点为:概率=所求情况数与总情况数之比4、【分析】先利用列举法求出所有4种可能的结果数,再分别根据三角形三边的关系找出符合条件的结果数,最后根据概率公式计算即可【详解】解:有4种可能的结果数,它们是:2cm、4cm、5cm;2cm、3cm、5cm;3cm、4cm、5cm;2cm、3cm、4cm,这三条线段能构成一个三角形的结果数为3,所以这三条线段能构成一个三角形的概率【点睛】本题主要考查了三角形的三边关系以及概率公式,根据已知确定可能的结果数和符合条件的结果数是解答本题的关键5、(1);(2)【分析】(1)直接利用概率公式求解可得(2)先画出树状图,根据树状图可以求得所有等可能的结果以及他们分别去不同景点游览的情况,再利用概率公式即可求得答案【详解】解:(1)小明选择去白云山游览的概率是;故答案为:;(2)画树状图得:共有9种等可能的结果,小明和小华分别去不同景点游览的情况有6种结果,小明和小华分别去不同景点游览的概率为【点睛】此题考查随机事件的概率计算,涉及到树状图法表示概率的方法