2022年最新强化训练沪教版(上海)七年级数学第二学期第十三章相交线-平行线专题攻克练习题(无超纲).docx
-
资源ID:28185836
资源大小:601.36KB
全文页数:29页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练沪教版(上海)七年级数学第二学期第十三章相交线-平行线专题攻克练习题(无超纲).docx
七年级数学第二学期第十三章相交线 平行线专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,下列条件中能判断直线的是( )A12B15C24D352、如图,ACBC,CDAB,则点C到AB的距离是线段()的长度ACDBADCBDDBC3、如图,直线ab,直线ABAC,若152°,则2的度数是()A38°B42°C48°D52°4、如图木条a、b、c用螺丝固定在木板a上,且,将木条a、木条b、木条c看作是在同一平面a内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系则下列描述错误的是( )A木条b、c固定不动,木条a绕点B顺时针旋转20°B木条b、c固定不动,木条a绕点B逆时针旋转160°C木条a、c固定不动,木条b绕点E逆时针旋转20°D木条a、c固定不动,木条b绕点E顺时针旋转110°5、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,ba,ca,求证:bc;证明:作直线DF交直线a、b、c分别于点D、E、F,ab,14,又ac,15,bc小明为保证嘉淇的推理更严谨,想在方框中“15”和“bc”之间作补充,下列说法正确的是()A嘉淇的推理严谨,不需要补充B应补充25C应补充3+5180°D应补充456、如图,木工用图中的角尺画平行线的依据是( )A垂直于同一条直线的两条直线平行B平行于同一条直线的两条直线平行C同位角相等,两直线平行D经过直线外一点,有且只有一条直线与这条直线平行7、如图,若ABCD,CDEF,那么BCE( )A180°21B180°12C221D128、如所示各图中,1与2是对顶角的是( )ABCD9、下列命题正确的是()(1)两条直线被第三条直线所截,同位角相等;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;(3)平移前后连接各组对应点的线段平行且相等;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)在同一平面内,三条直线的交点个数有三种情况A0个B1个C2个D3个10、如图,ABCD,AECF,C131°,则A( )A39°B41°C49°D51°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在四边形ABCD中,ABCD,ADBC,点F在BC的延长线上,CE平分DCF交AD的延长线于点E,已知E35°,则A_2、如图,把一张三角形纸片(ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DEBC,若B70°,则BDF的度数为_3、在数学课上,王老师提出如下问题:如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案小李同学的作法如下:连接AB;过点A作AC直线l于点C;则折线段BAC为所求王老师说:小李同学的方案是正确的请回答:该方案最节省材料的依据是垂线段最短和_4、如图,OE是的平分线,交OA于点C,交OE于点D,则的度数是_°5、如图,已知是上一点,平分交于点,则的度数为_三、解答题(10小题,每小题5分,共计50分)1、如图所示,M、N是直线AB上两点,12,问1与2,3与4是对顶角吗? 1与5,3与6是邻补角吗?2、如图,107国道上有一个出口M,想在附近公路旁建一个加油站,欲使通道最短,应沿怎样的线路施工?3、如图1,在平面直角坐标系中,且满足,过作轴于(1)求,的值;(2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由(3)若过作交轴于,且,分别平分,如图2,图3,求:的度数;求:的度数4、已知:如图,直线,直线MN交EF,PO于点A,B,直线HQ交EF,PO于点D,C,DG与OP交于点G,若,(1)求证:;(2)请直接写出的度数5、如图,己知ABDC,ACBC,AC平分DAB,B50°,求D的大小阅读下面的解答过程,并填括号里的空白(理由或数学式)解:ABDC( ),B+DCB180°( )B( )(已知),DCB180°B180°50°130°ACBC(已知),ACB( )(垂直的定义)2( )ABDC(已知),1( )( )AC平分DAB(已知),DAB21( )(角平分线的定义)ABDC(己知),( )+DAB180°(两条直线平行,同旁内角互补)D180°DAB 6、阅读下面的推理过程,将空白部分补充完整已知:如图,在ABC中,FGCD,1 = 3求证:B + BDE= 180°解:因为FGCD(已知),所以1= 又因为1 = 3 (已知),所以2 = (等量代换)所以BC ( ),所以B + BDE = 180°(_)7、如图,直线AB、CD相交于点O,EOC90°,OF是AOE的角平分线,COF34°,求BOD的度数8、已知ABCD,点是AB,CD之间的一点(1)如图1,试探索AEC,BAE,DCE之间的数量关系;以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点E作PEAB(过直线外一点有且只有一条直线与这条直线平行)ABCD(已知),PECD( ),BAE1,DCE2( ),BAE+DCE + (等式的性质)即AEC,BAE,DCE之间的数量关系是 (2)如图2,点F是AB,CD之间的一点,AF平分BAE,CF平分DCE若AEC74°,求AFC的大小;若CGAF,垂足为点G,CE平分DCG,AEC+AFC126°,求BAE的大小9、如图所示,已知AOD=BOC,请在图中找出BOC的补角,邻补角及对顶角10、(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画出几条?(2)经过直线上一点A画的垂线,这样的垂线能画出几条?(3)经过直线外一点B画的垂线,这样的垂线能画出几条?-参考答案-一、单选题1、C【分析】利用平行线的判定方法判断即可得到结果【详解】解:A、根据1=2不能判断直线l1l2,故本选项不符合题意B、根据1=5不能判断直线l1l2,故本选项不符合题意C、根据“内错角相等,两直线平行”知,由2=4能判断直线l1l2,故本选项符合题意D、根据3=5不能判断直线l1l2,故本选项不符合题意故选:C【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键2、A【分析】根据和点到直线的距离的定义即可得出答案【详解】解:,点到的距离是线段的长度,故选:A【点睛】本题考查了点到直线的距离,理解定义是解题关键3、A【分析】利用直角三角形的性质先求出B,再利用平行线的性质求出2【详解】解:ABAC,152°,B90°190°52°38°ab,2B38°故选:A【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键4、D【分析】根据同位角相等,两直线平行,逐项判断即可【详解】解:A、木条b、c固定不动,木条a绕点B顺时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;B、木条b、c固定不动,木条a绕点B逆时针旋转160°,此时 ,则 ,有 ,故本选项正确,不符合题意;C、木条a、c固定不动,木条b绕点E逆时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;D、木条a、c固定不动,木条b绕点E顺时针旋转110°,木条b、c重合,则 ,故本选项错误,符合题意故选:D【点睛】本题主要考查了平行线的判定,图形的旋转,熟练掌握同位角相等,两直线平行是解题的关键5、D【分析】根据平行线的性质与判定、平行公理及推论解决此题【详解】解:证明:作直线DF交直线a、b、c分别于点D、E、F,ab,1=4,又ac,1=5,4=5bc应补充4=5故选:D【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键6、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题7、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答【详解】ABCD,CDEF,1=BCD,ECD+2=180°,BCEBCD+ECD=180°21,故选A【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键8、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角【详解】解:A1与2没有公共顶点,不是对顶角;B1与2有公共顶点,并且两边互为反向延长线,是对顶角;C1与2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D1与2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角故选:B【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键9、B【分析】根据平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系逐个判断即可得【详解】解:(1)两条平行线被第三条直线所截,同位角相等;则原命题错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;则原命题正确;(3)平移前后连接各组对应点的线段平行(或在同一条直线上)且相等;则原命题错误;(4)从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离;则原命题错误;(5)在同一平面内,三条直线的交点个数可能为0个或1个或2个或3个,共有四种情况;则原命题错误;综上,命题正确的是1个,故选:B【点睛】本题考查了平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系,熟练掌握各定义和性质是解题关键10、C【分析】由题意直接根据平行线的性质进行分析计算即可得出答案【详解】解:如图,ABCD,C131°,1 =180°-C=49°(两直线平行,同旁内角互补),AECF,A=C=49°(两直线平行,同位角相等)故选:C【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键二、填空题1、110度【分析】根据平行线的性质和角平分线的性质可得结论【详解】解:AD/BC CE平分DCF AB/CD AD/BC 故答案为:110【点睛】本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键2、40°【分析】利用平行线的性质求出ADE70°,再由折叠的性质推出ADEEDF70°即可解决问题【详解】解:DEBC,ADEB70°,由折叠的性质可得ADEEDF70°,BDF180°ADE-EDF40°,故答案为:40°【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键3、两点之间线段最短【分析】根据两点之间线段最短即可得到答案【详解】解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,故答案为:两点之间线段最短【点睛】本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键4、25【分析】先证明再证明从而可得答案.【详解】解: OE是的平分线, , 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,熟练的运用平行线的性质与角平分线的定义证明角的相等是解本题的关键.5、【分析】根据平行线的性质可得,根据平分线的性质可得,进而即可求得的度数【详解】,平分,故答案为:【点睛】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质是解题的关键三、解答题1、1和2,3和4都不是对顶角,1与5,3与6也都不是邻补角【分析】根据对顶角和邻补角的定义求解即可【详解】解:根据对顶角的定义可得:1和2,3和4都不是对顶角;根据邻补角的定义可得,1与5,3与6也都不是邻补角【点睛】此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。2、作图见解析【分析】根据垂线段最短作图即可;【详解】解:如图,过点M作MN,垂足为N,欲使通道最短,应沿线路MN施工.【点睛】本题主要考查了垂线段最短的应用,尺规作图,准确分析作图是解题的关键3、(1),;(2)存在,或;(3);【分析】(1)根据非负数的和为零,则每一个数为零,列等式计算即可;(2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可; (3)利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;作,利用平行线的性质,角的平分线的定义,计算即可【详解】解:(1),m+4=0,n-4=0,.(2)存在,设点P的坐标为(n,0),则OP=|n|,A(-4,0),C(4,4),B(4,0),AB=4-(-4)=8,且和的面积相等,OP=AB=8,|n|=8,n=8或n=-8,或;(3),又,作,如图,分别平分,即【点睛】本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键4、(1)见解析;(2)【分析】(1)根据可得,再根据内错角相等两直线平行即可得证;(2)根据两直线平行的性质可得,从而可得,再由即可求解【详解】解:(1),;(2),【点睛】本题考查了平行线的判定及性质,解题的关键是掌握平行线的判定及性质,利用数形结合的思想进行求解5、见解析【分析】先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得【详解】解:(已知),(两直线平行,同旁内角互补)(已知),(已知),(垂直的定义)(已知),(两直线平行,内错角相等)平分(已知),(角平分线的定义)(己知),(两条直线平行,同旁内角互补)【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键6、2;3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到B + BDE = 180°【详解】解:因为FGCD(已知),所以1=2又因为1 = 3 (已知),所以2 =3(等量代换)所以(内错角相等,两直线平行),所以B + BDE = 180°(两直线平行,同旁内角互补)故答案为:2;3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用7、【分析】根据、可得,OF是AOE的角平分线,可得,所以,再根据对顶角相等,即可求解【详解】解:、,OF是AOE的角平分线,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系8、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,1,2,AECBAE+DCE;(2)37°;52°【分析】(1)结合图形利用平行线的性质填空即可;(2)过F作FGAB,由(1)得:AECBAE+DCE,根据ABCD,FGAB,CDFG,得出AFC=AFG+GFCBAF+DCF,根据AF平分BAE,CF平分DCE,可得BAFBAE,DCFDCE,根据角的和差AFCBAF+DCF=AEC即可;由得:AEC2AFC,可求AFC42°,AEC82°,根据CGAF,求出GCF=90-AFC=48°,根据角平分线计算得出GCF3DCF,求出DCF16°即可【详解】解:(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,1,2,AECBAE+DCE,故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,1,2,AECBAE+DCE,(2)过F作FGAB,由(1)得:AECBAE+DCE,ABCD,FGAB,CDFG,BAF=AFG,DCF=GFC,AFC=AFG+GFCBAF+DCF,AF平分BAE,CF平分DCE,BAFBAE,DCFDCE,AFCBAF+DCF,BAE+DCE,=(BAE+DCE),AEC,×74°,37°;由得:AEC2AFC,AEC+AFC126°,2AFC+AFC126°3AFC126°,AFC42°,AEC84°,CGAF,CGF90°,GCF=90-AFC=48°, CE平分DCG,GCEECD,CF平分DCE,DCE2DCF2ECF,GCF3DCF,DCF16°,DCE32°,BAEAECDCE52°【点睛】本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键9、BOC的补角有两个BOD和AOC;BOC的邻补角为AOC;BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为BOCAOC=180º(平角定义),所以AOC是BOC的补角,AOD=BOC(已知),所以BOCBOD=180º.所以BOD是BOC的补角所以BOC的补角有两个:BOD和AOC.因为AOC和BOC相邻,所以BOC的邻补角为:AOC.BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.10、(1)能画无数条;(2)能画一条;(3)能画一条【分析】用三角板的一条直角边与已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和点A(或点B)重合,过点A(或点B)沿直角边向已知直线画直线即可,在两线相交处标出垂足(直角符号),据此即可解答【详解】解:(1)根据题意得:画已知直线的垂线,这样的垂线能画出无数条;(2)根据题意得:经过直线上一点A画的垂线,这样的垂线能画出一条;(3)根据题意得:经过直线外一点B画的垂线,这样的垂线能画出一条【点睛】本题主要考查了画已知直线的垂线,熟练掌握同一平面内,过已知点有且只有一条直线与已知直线垂直是解题的关键