模拟测评2022年中考数学历年真题汇总-(A)卷(精选).docx
-
资源ID:28186360
资源大小:804.04KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
模拟测评2022年中考数学历年真题汇总-(A)卷(精选).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年中考数学历年真题汇总 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在O中,直径CD弦AB,则下列结论中正确的是AAC=ABBC=BODCC=BDA=B0D2、若分式有意义,则的取值范围是( )ABCD3、如果是一元二次方程的一个根,那么常数是( )A2B-2C4D-44、的相反数是( )ABCD5、如图,已知是的直径,过点的弦平行于半径,若的度数是,则的度数是( )ABCD6、若a0,则=( ) AaB-aC- D07、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合储藏此种水饺是( )ABCD8、下列变形中,正确的是( )A若,则B若,则C若,则D若,则9、若是最小的自然数, 是最小的正整数,是绝对值最小的有理数,则的值为( ) A-1B1C0D210、若把分式中的x和y都扩大10倍,那么分式的值( )A扩大10倍B不变C缩小10倍D缩小20倍第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则a=_, b=_· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2、双曲线,当时,随的增大而减小,则_3、如图,半圆O的直径AE4,点B,C,D均在半圆上若ABBC,CDDE,连接OB,OD,则图中阴影部分的面积为_.4、关于x的一元二次方程(m5)x2+2x+2=0有实根,则m的最大整数解是_5、已知圆锥的底面周长为,母线长为则它的侧面展开图的圆心角为_度三、解答题(5小题,每小题10分,共计50分)1、某公司生产A型活动板房成本是每个425元图表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4米,宽AB=3米,抛物线的最高点E到BC的距离为4米(1)按如图所示的直角坐标系,抛物线可以用表示直接写出抛物线的函数表达式 (2)现将A型活动板房改造为B型活动板房如图,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户每平方米的成本为50元已知GM=2米,直接写出:每个B型活动板房的成本是 元(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场信息,这样的B型活动板房公司每月最多能生产个,若以单价元销售B型活动板房,每月能售出个;若单价每降低元,每月能多售出个这样的B型活动板房不考虑其他因素,公司将销售单价(元)定为多少时,每月销售B型活动板房所获利润(元)最大?最大利润是多少?2、已知抛物线与轴负半轴交于点,与轴交于点,直线经过点和点(1)求直线的函数表达式;(2)若点和点分别是抛物线和直线上的点,且,判断和的大小,并说明理由3、如图,在平面直角坐标系中,抛物线yx2+bx+c过点A(0,1),B(3,2)直线AB交x轴于点C(1)求抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一个动点连接PA、PC,当PAC的面积取得最大值时,求点P的坐标和PAC面积的最大值;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)把抛物线yx2+bx+c沿射线AB方向平移个单位形成新的抛物线,M是新抛物线上一点,并记新抛物线的顶点为点D,N是直线AD上一点,直接写出所有使得以点B,C,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来4、掘土机挖一个工地,甲机单独挖12天完成,乙机单独挖15天完成现在两台掘土机合作若干天后,再由乙机单独挖6天完成问:甲乙两台掘土机合作挖了多少天?5、如图,在矩形ABCD中,E是CD边上的一点,M是BC边的中点,动点P从点A出发沿边AB以的速度向终点B运动,过点P作于点H,连接EP设动点P的运动时间是(1)当t为何值时,?(2)设的面积为,写出与之间的函数关系式(3)当EP平分四边形PMEH的面积时,求t的值(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由-参考答案-一、单选题1、B【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到C=BOD,从而可对各选项进行判断【详解】解:直径CD弦AB,弧AD =弧BD,C=BOD故选B【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、A【解析】试题解析:根据题意得:3-x0,解得:x3.故选A.考点:分式有意义的条件.3、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立【详解】把x=2代入方程x2=c可得:c=4故选C【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题考查的是一元二次方程的根即方程的解的定义4、A【分析】直接利用特殊角的三角函数值得出cos45°的值,再利用互为相反数的定义得出答案【详解】cos45°= 的相反数是故选A【点睛】本题主要考查了特殊角的三角函数值以及相反数,正确记忆特殊角的三角函数值是解题的关键5、A【分析】根据平行线的性质和圆周角定理计算即可;【详解】,故选A【点睛】本题主要考查了圆周角定理、平行线的性质,准确计算是解题的关键6、B【分析】根据负数的绝对值等于它的相反数,即可解答【详解】解:a0,|a|=-a故选:B 【点睛】本题考查绝对值,解题的关键是熟记负数的绝对值等于它的相反数7、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案【详解】解:-18-2=-20,-18+2=-16,温度范围:-20至-16,故选:B【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度8、B【分析】根据等式的性质,对选项逐个判断即可【详解】解:选项A,若,当时,不一定成立,故错误,不符合题意;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·选项B,若,两边同时除以,可得,正确,符合题意;选项C,将分母中的小数化为整数,得,故错误,不符合题意;选项D,方程变形为,故错误,不符合题意;故选B【点睛】此题考查了等式的性质,熟练掌握等式的有关性质是解题的关键9、C【分析】由a是最小的自然数,b是最小的正整数,c是绝对值最小的数可分别求出a、b、c的值,可求出a-bc的值【详解】解:因为a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,所以a=0,b=1,c=0,所以a-bc=0-1×0=0,故选:C【点睛】本题考查有理数的有关概念,注意:最小的自然数是0;最小的正整数是1,绝对值最小的有理数是010、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案【详解】解:分式中的x和y都扩大10倍可得:,分式的值不变,故选B【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变二、填空题1、2 2 【分析】先根据异分母分式的加法法则计算,再令等号两边的分子相等即可【详解】解:,a(x2)b(x2)4x,即(ab)x2(ab)4x,ab4,ab0,a=b=2,故答案为:2,2.【点睛】本题考查的是分式的加减法,在解答此类问题时要注意通分的应用2、【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【详解】根据题意得:,解得:m=2故答案为2【点睛】本题考查了反比例函数的性质对于反比例函数y=,当k0时,在每一个象限内,函数值y随自变量x的增大而减小;当k0时,在每一个象限内,函数值y随自变量x增大而增大3、【分析】根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解【详解】如图,连接CO,AB=BC,CD=DE,BOC+COD=AOB+DOE90°,AE=4,AO=2,S阴影【点睛】本题考查了扇形的面积计算及圆心角、弧之间的关系解答本题的关键是得出阴影部分的面积等于扇形BOD的面积4、m=4【详解】分析:若一元二次方程有实根,则根的判别式=b24ac0,建立关于m的不等式,求出m的取值范围还要注意二次项系数不为0详解:关于x的一元二次方程(m5)x2+2x+2=0有实根,=48(m5)0,且m50,解得m5.5,且m5,则m的最大整数解是m=4故答案为m=4点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式的关系:(1)0,方程有两个不相等的实数根;(2)=0,方程有两个相等的实数根;(3)0方程没有实数根5、【分析】根据弧长=圆锥底面周长=4,弧长=计算【详解】由题意知:弧长=圆锥底面周长=4cm,=4,解得:n=240故答案为240【点睛】本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系三、解答题1、(1)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)500(3)公司将销售单价n定为620元时,每月销售B型活动板房所获利润w最大,最大利润是19200元【分析】(1)根据题意,待定系数法求解析式即可;(2)根据(1)的结论写出的坐标,进而求得,根据矩形的面积公式计算,进而求得每个B型活动板房的成本;(3)根据利润等于单个利润乘以销售量,进而根据二次函数的性质求得最值即可(1)长方形的长,宽,抛物线的最高点到的距离为,由题意知抛物线的函数表达式为,把点代入,得,该抛物线的函数表达式为故答案为:(2),当时,每个B型活动板房的成本是(元)故答案为:500(3)根据题意,得, 每月最多能生产个B型活动板房,解得, ,时,随的增大而减小,当时,有最大值,且最大值为 答:公司将销售单价定为元时,每月销售B型活动板房所获利润最大,最大利润是元【点睛】本题考查了二次函数的应用,二次函数的性质,掌握二次函数的性质是解题的关键2、(1)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2),理由见解析【分析】(1)令y=0,可得x的值,即可确定点A坐标,令x=0,可求出y的值,可确定点B坐标,再运用待定系数法即可求出直线m的解析式;(2)根据可得抛物线在直线m的下方,从而可得(1)令y=0,则 解得, 点A在另一交点左侧,A(-3,0)令x=0,则y=-3B(0,-3)设直线m的解析式为y=kx+b把A(-3,0),B(0,-3)坐标代入得, 解得, 直线m的解析式为;(2)抛物线与直线的交点坐标为:A(-3,0),B(0,-3)又抛物线在直线m的下方,点和点分别是抛物线和直线上的点,【点睛】本题考查了二次函数,其中涉及到运用待定系数法求二次函数解析式,二次函数与坐标轴交点坐标的求法,运用数形结合的思想是解答本题的关键3、(1)(2),(3)或,或,【分析】(1)先由抛物线过点求出的值,再由抛物线经过点求出的值即可;(2)作轴,交直线于点,作于点,设直线的函数表达式为,由直线经过点求出直线的函数表示式,设,则,可证明,于是可以用含的代数式表示、的长,再将的面积用含的代数式表示,根据二次函数的性质即可求出的面积的最大值及点的坐标;(3)先由沿射线方向平移个单位相当于向右平移1个单位,再向上平移1个单位,说明抛物线沿射线方向平移个单位也相当于向右平移1个单位,再向上平移1个单位,根据平移的性质求出新抛物线的函数表达式,再按以为对角线或以为一边构成平行四边形分类讨论,求出点的坐标【小题1】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:抛物线过点,抛物线经过点,解得,抛物线的函数表达式为【小题2】如图1,作轴,交直线于点,作于点,则,设直线的函数表达式为,则,解得,直线的函数表达式为,当时,则,解得,轴,设,则,当时,此时,点的坐标为,面积的最大值为【小题3】如图2,将沿射线方向平移个单位,则点的对应点与点重合,得到,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,相当于向右平移1个单位,再向上平移1个单位,抛物线沿射线方向平移个单位也相当于向右平移1个单位,再向上平移1个单位,平移后得到的抛物线的函数表达式为,即,它的顶点为,轴,设直线与抛物线交于点,由平移得,为的中点,当以,为顶点平行四边形以为对角线时,设抛物线交轴于点,作直线交轴于点,当时,延长交轴于点,则,四边形是平行四边形,是以,为顶点平行四边形的顶点;若点与点重合,点与点重合,也满足,但此时点、在同一条直线上,构不成以点、为顶点平行四边形;如图3,以,为顶点的平行四边形以为一边,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·抛物线,当时,则,解得,抛物线经过点,设抛物线与轴的另一个交点为,则,作于点,连接,则轴,点的纵坐标为1,当时,则,解得,点的坐标为,或,综上所述,点的坐标为或,或,【点睛】此题重点考查二次函数的图象与性质、一次函数的图象与性质、全等三角形的判定与性质、平行四边形的判定、勾股定理、解一元二次方程等知识与方法,解题时应注意数形结合、分类讨论等数学思想的运用4、甲乙两台掘土机合作挖了4天.【分析】设甲乙两台掘土机合作挖了天,则甲乙合作的工作量为乙机单独挖6天完成的工作量为 再结合两部分的工作量之和等于1列方程,解方程即可.【详解】解:设甲乙两台掘土机合作挖了天,则 整理得: 解得: 答:甲乙两台掘土机合作挖了4天.【点睛】本题考查的是一元一次方程的应用,掌握“工作时间乘以工作效率等于工作量”是解本题的关键.5、(1)t;(2)yt26t(0t14);(3)t;(4)【分析】(1)通过证明CEMBMP,可得,即可求解;(2)利用锐角三角函数分别求出EH,HP,由三角形面积公式可求解;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)由SEHPSEMP,列出等式可求解;(4)由对称性可得AEPBEP,由角平分线的性质可得PFPH,由面积关系可求解【详解】解:(1)四边形ABCD是矩形AB=CD,BC=ADM是BC边的中点,CMBM6cm,DE=9cm,EC5cm,PMEM,PMBCME90°,又BMPBPM90°,BPMEMC,又BC90°,CEMBMP,t;(2)四边形ABCD是矩形,D90°,AE2AD2DE2,AD=12cm,DE=9cm,AEcm,ABCD,DEAEAB,sinDEAsinEAB,HPt,AHt,HE15t,SEHP×EH×HP,y(15t)×tt26t(0t14);(3)EP平分四边形PMEH的面积,SEHPSEMP,(15t)×t×12×(514t)×6×(14t)×6×5,解得:t1=,t2=0t14,t;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(4)如图2,连接BE,过点P作PFBE于F,点B关于PE的对称点,落在线段AE上,AEPBEP,又PHAE,PFBE,PFPHt,EC5cm,BC12cm,BEcm,SABESAEPSBEP,×14×12×(1513)×t,t【点睛】本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键