2022年强化训练沪科版九年级数学下册第26章概率初步同步训练试题(无超纲).docx
-
资源ID:28186873
资源大小:268.10KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年强化训练沪科版九年级数学下册第26章概率初步同步训练试题(无超纲).docx
沪科版九年级数学下册第26章概率初步同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )ABCD2、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )ABCD3、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )ABCD4、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是( )ABCD5、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C由此估计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株6、下列词语所描述的事件,属于必然事件的是( )A守株待兔B水中捞月C水滴石穿D缘木求鱼7、下列说法正确的是()A调查“行云二号”各零部件的质量适宜采用抽样调查方式B5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定8、下列说法不正确的是()A不可能事件发生的概率是0B概率很小的事件不可能发生C必然事件发生的概率是1D随机事件发生的概率介于0和1之间9、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进)则小张从不同的出入口进出的概率是()ABCD10、将7个分别标有数字3,2,1,0,1,2,3的小球放到一个不透明的袋子里,它们大小相同,随机摸取一个小球将其标记的数字记为m,则使得二次函数yx23x+m2与x轴有交点,且关于x的分式方程有解的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个袋中有形状材料均相同的白球2个、红球3个,任意摸一个球是红球的概率_2、现有5张除数字外完全相同的卡片,上面分别写有,0,1,2这五个数,将卡片背面朝上洗匀,从中任意抽取两张,将卡片上的数字记为(1)用列表法或画树状图法列举的所有可能结果(2)若将m,n的值代入二次函数,求二次函数顶点在坐标轴上的概率3、在不透明的袋中装有仅颜色不同的一个红球和一个蓝球,从此袋中随机摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的球颜色不同的概率是_4、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为 _5、在一个不透明的布袋中装有红球、白球共20个,这些球除颜色外都相同小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.65,则布袋中红球的个数大约是_三、解答题(5小题,每小题10分,共计50分)1、盒中有1枚黑棋和3白棋,这些棋除颜色外无其他差别,某同学一次摸出两枚棋,请通过列表或树状图计算这两枚棋颜色不同的概率2、一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球(1)求摸出一个球是白球的概率(2)第一次摸出1个球,记下颜色,放回摇匀,再摸出1个球,求两次摸出颜色相同的球的概率(用树状图或列表来表示分析过程)3、如图,转盘黑色扇形和白色扇形的圆心角分别为120°和240°(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率(注:当指针恰好指在分界线上时,无效重转)4、一个不透明的口袋里装有分别标有汉字“书”、“香”、“华”、“一”的四个小球,除字不同之外,小球没有任何区别,每次摸球前先搅拌均匀(1)若从中任取一个球,球上的汉字刚好是“书”的概率为 ;(2)从中随机取出两球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“华一”的概率5、国庆期间,某电影院上映了长津湖我和我父辈五个扑水的少年三部电影甲、乙两同学从中选取一部电影观看求甲、乙两同学选取同一部电影的概率-参考答案-一、单选题1、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键2、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案【详解】解:在不透明的布袋中装有1个白球,2个红球,3个黑球,从袋中任意摸出一个球,摸出的球是红球的概率是:故选:B【点睛】此题考查了概率公式的应用注意概率=所求情况数与总情况数之比3、B【分析】设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率【详解】解:设四张小图片分别用A,a,B,b表示,画树状图得:由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,摸取两张小图片恰好合成一张完整图片的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键4、C【分析】根据骰子各面上的数字得到向上一面的点数可能是3或4,利用概率公式计算即可【详解】解:一枚质地均匀的骰子共有六个面,点数分别为1,2,3,4,5,6,点数大于2且小于5的有3或4,向上一面的点数大于2且小于5的概率是=,故选:C【点睛】此题考查了求简单事件的概率,正确掌握概率的计算公式是解题的关键5、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键6、C【分析】根据必然事件就是一定发生的事件逐项判断即可【详解】A守株待兔是随机事件,故该选项不符合题意;B水中捞月是不可能事件,故该选项不符合题意;C水滴石穿是必然事件,故该选项符合题意;D缘木求鱼是不可能事件,故该选项不符合题意故选:C【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键7、B【分析】分别对各个选项进行判断,即可得出结论【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键8、B【分析】根据概率的意义分别判断后即可确定正确的选项【详解】解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;B. 概率很小的事件也可能发生,故该选项不正确,符合题意;C. 必然事件发生的概率是1,故该选项正确,不符合题意;D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为09、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,P小张从不同的出入口进出的结果数,故选D【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率10、B【分析】根据抛物线与x轴有交点,计算出,根据分式方程有解,计算出,再在中找出满足的数,利用概率公式求解【详解】解:与x轴有交点,则,解得:,有解,则,即,在中,满足且有:,共5个,有概率公式知概率为:,故选:B【点睛】本题考查了二次函数与坐标轴交点的问题、分式方程、概率,解题的关键是求出的取值范围后,确定满足条件的个数二、填空题1、【分析】袋中有五个小球,3个红球,2个白球,利用概率公式直接求解即可求得答案【详解】解:袋中有五个小球,3个红球,2个白球,形状材料均相同,从中任意摸一个球,摸出红球的概率为,故答案是:【点睛】本题考查概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)2、(1)见解析;(2)【分析】(1)画出树状图即可;(2)共有20种可能的结果,其中二次函数顶点在坐标轴上的结果有8种,再由概率公式求解即可【详解】(1)画树状图得共有20种可能的结果;(2)从,0,1,2这五个数中任取两数m,n,共有20种可能,其中二次函数顶点在坐标轴上(记为事件A)的有8种,所以【点睛】本题考查了用树状图法求概率以及二次函数的性质树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率=所求情况数与总情况数之比3、【分析】根据题意,列表分析所有可能,然后运用概率公式求解即可【详解】解:列表如下,表示红球,表示蓝球第一次第二次 总共4种情况,两次摸出的球颜色不同的2种所以两次摸出的球颜色不同的概率是故答案是:【点睛】本题考查了列表法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比4、【分析】抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于5的概率【详解】解:抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,从中任意抽取一张,抽出的牌点数小于5的概率是: 故答案为:【点睛】此题主要考查了概率的求法用到的知识点为:概率=所求情况数与总情况数之比5、13【分析】总数量乘以摸到红球的频率的稳定值即可【详解】解:根据题意知,布袋中红球的个数大约是20×0.6513,故答案为:13【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率三、解答题1、【分析】用列表法列举所有可能出现的结果,再找出所求事件可能出现的结果,由即可求出相应概率【详解】如表所示由表可知共有12种情况,其中摸出两枚棋子的颜色不同的情况有6种故P=【点睛】当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法,列表法的一般步骤:把所有可能发生的试验结果一一列举出来,要求:不重不漏;所有可能结果有规律地填入表格,把所求事件发生的可能结果都找出来代入计算公式:,当事件的发生只经过两个步骤时,一般用列表法就能将所有的可能结果列举出来,当经过多个步骤时,表格就不够清晰了,而画树状图法的适用面更广,特别是多个步骤时,层次清楚,一目了然2、(1);(2)【分析】(1)根据概率公式列式计算即可得解;(2)画出树状图或列出图表,然后根据概率公式列式计算即可得解【详解】解(1)摸出一个球的所有可能结果总数,摸到是白球的可能结果数,摸出一个球是白球的概率为(2)画树状图如下:由树状图知,一共有9种情况,两次摸出颜色相同的球有5种,所以两次摸出颜色相同的球的概率【点睛】本题考查的是用列表法或树状图法求概率,解题的关键是掌握公式:概率所求情况数与总情况数之比3、(1);(2)见解析,【分析】(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得【详解】解:(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是;(2)设白色扇形两块和黑色扇形的一块分别为1,2,3,画树状图得: 由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,所以指针一次落在白色区域,另一次落在黑色区域的概率为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比4、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图计算即可;【详解】(1)由题可得,球上的汉字刚好是“书”的概率为;故答案是:;(2)根据题意画出树状图如下:则取出的两个球上的汉字能组成“华一”的概率为【点睛】本题主要考查了概率公式和树状图法求概率,准确画图计算是解题的关键5、【分析】通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可【详解】解:把长津湖我和我父辈五个扑水的少年三部电影分别记为A、B、C,画树状图如下:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,甲、乙两同学选取同一部电影的概率为【点睛】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比