2022年必考点解析北师大版八年级数学下册第一章三角形的证明难点解析试题(含解析).docx
-
资源ID:28187075
资源大小:574.62KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年必考点解析北师大版八年级数学下册第一章三角形的证明难点解析试题(含解析).docx
北师大版八年级数学下册第一章三角形的证明难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,的垂直平分线交于点,垂足为,若,则的长为( )A2cmB4cmC5cmD6cm2、如图,在一个单位为1的方格纸上,A1A2A3,A3A4A5,A5A6A7,是斜边在x轴上,斜边长分别为2,4,6,.的等腰直角三角形若A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为()A-1008B-1010C1012D-10123、下列命题是真命题的是( )A等腰三角形的角平分线、中线、高线互相重合B一个三角形被截成两个三角形,每个三角形的内角和是90度C有两个角是60°的三角形是等边三角形D在ABC中,则ABC为直角三角形4、下列四组数据中,不能作为直角三角形的三边长的是( )A5,13,12B6,8,10C9,12,15D3,4,65、一副三角板如图放置,点A在DF的延长线上,DBAC90°,E30°,C45°,若BC/DA,则ABF的度数为()A15°B20°C25°D30°6、如图,在ABC中,AD是角平分线,且,若,则的度数是( )A45°B50°C52°D58°7、如图,RtABC中,C90°,利用尺规在BC,BA上分别截取BE,BD,使BEBD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在CBA内交于点F;作射线BF交AC于点G若CG1,P为AB上一动点,则GP的最小值为()A无法确定BC1D28、如图,在RtABC中,C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC于N、M两点,则BCM的周长为()A18B16C17D无法确定9、如图,RtABC中,ÐB90°,点P在边AB上,CP平分ACB,PB3cm,AC10cm,则APC的面积是( )A15cm2B22.5cm2C30cm2D45cm210、点P在AOB的平分线上(不与点O重合),PCOA于点C,D是OB边上任意一点,连接PD若PC=3,则下列关于线段PD的说法一定正确的是()APD=POBPD3C存在无数个点D使得PD=PCDPD3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,ABBC,ABC120°,E是线段AC上一点,连接BE并延长至D,连接CD,若BCD120°,AB2CD,AE7,则线段CE长为 _2、如图,在ABC中, A=90°,BD平分ABC,交AC于点D,已知AD=4,则D到BC边的距离为_3、以线段MN为底边的等腰三角形的顶角顶点的轨迹是 _4、由于木质衣架没有柔性,在挂置衣服的时候不太方便操作小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可如图2,衣架杆,若衣架收拢时,如图1,若衣架打开时,则此时,两点之间的距离扩大了_5、若一条长为24cm的细线能围成一边长等于9cm的等腰三角形,则该等腰三角形的腰长为_cm三、解答题(5小题,每小题10分,共计50分)1、下面是小军设计的“过线段端点作这条线段的垂线”的尺规作图过程已知:线段AB求作:AB的垂线,使它经过点A作法:如图,以点A为圆心,AB长为半径作弧,交线段BA的延长线于点C; 分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于直线BC上方的点D;作直线AD所以直线AD就是所求作的垂线根据小军设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接CD,BDBD= ,AB= ,ADAB( )(填推理的依据)2、如图1,CACB,CDCE,ACB=DCE=,AD、BE交于点H,连CH(1)AHE_(用表示)(2)如图2,连接CH,求证:CH平分AHE;(3)如图3,若=60°,P,Q 分别是AD,BE的中点,连接CP,PQ,CQ请判断三角形PQC的形状,并证明3、如图,ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动(1)在运动过程中DEF是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE=4,DEC=150°,求等边ABC的周长;4、如图,在ABC中,AB=AC,CDAB于点D,A=50°,求BCD的度数5、已知POQ=120°,点A,B分别在OP,OQ上,OAOB,连接AB,在AB上方作等边ABC,点D是BO延长线上一点,且AB=AD,连接AD(1)补全图形;(2)连接OC,求证:COP=COQ;(3)连接CD,CD交OP于点F,请你写出一个DAB的值,使CD=OB+OC一定成立,并证明-参考答案-一、单选题1、D【分析】由题意知,可求出的值【详解】解:由题意知在中又 故选D【点睛】本题考察了垂直平分线的性质,角的直角三角形的性质解题的关键在于灵活运用垂直平分线与角的直角三角形的性质2、C【分析】首先确定角码的变化规律,利用规律确定答案即可【详解】解:各三角形都是等腰直角三角形,直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0),2021÷4=505余1,点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,A2021的坐标为(1012,0)故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键3、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为,所以三角形是等边三角形,故此选项正确;D.设,则,故,解得,所以,此三角形不是直角三角形,故此选项错误故选:C【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键4、D【分析】根据勾股定理的逆定理进行判断即可【详解】解:A、,故A不符合题意B、,故B不符合题意C、,故C不符合题意D、,故D符合题意故选:D【点睛】本题主要是考查了勾股定理的逆定理,熟练利用勾股定理来判定三角形是否为直角三角形,是解决本题的关键5、A【分析】先求出EFD=60°,ABC=45°,由BCAD,得到EFD=FBC=60°,则ABF=FBC-ABC=15°【详解】解:DBAC90°,E30°,C45°,EFD=60°,ABC=45°,BCAD,EFD=FBC=60°,ABF=FBC-ABC=15°,故选A【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键6、A【分析】根据角平分线性质求出DCA,再根据等腰三角形的性质和三角形的内角和定理求解C和B即可【详解】解:AD是角平分线,DCA=30°,AD=AC,C=(180°DCA)÷2=75°,B=180°BACC=180°60°75°=45°,故选:A【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键7、C【分析】如图,过点G作GHAB于H根据角平分线的性质定理证明GHGC1,利用垂线段最短即可解决问题【详解】解:如图,过点G作GHAB于H由作图可知,GB平分ABC,GHBA,GCBC,GHGC1,根据垂线段最短可知,GP的最小值为1,故选:C【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键8、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可【详解】解:在RtABC中,C=90°,AC=12,AB=13,由勾股定理得,MN是AB的垂直平分线,MB=MA,BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键9、A【分析】过点P作PDAC于D,由角平分线的性质可得PD=PB=3cm,然后利用三角形面积公式求解即可【详解】解:如图所示,过点P作PDAC于D,CP平分ACB,B=90°,PDAC,PD=PB=3cm,故选A【点睛】本题主要考查了角平分线的性质,三角形面积,熟知角平分线上的点到角两边的距离相等是解题的关键10、D【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为3,再根据垂线段最短解答即可【详解】解:点P在AOB的平分线上,PCOA于点C,PC=3, 点P到OB的距离为3,点D是OB边上的任意一点,根据垂线段最短,PD3故选:D【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键二、填空题1、#【分析】作,垂足为,根据等腰三角形的性质可得,根据含30度角的直角三角形的性质得出,那么可证再利用证明,得出,设,根据列出方程,求解即可【详解】解:作,垂足为,在和中,设,则,线段长为故答案为【点睛】本题考查了等腰三角形的性质、含30度角的直角三角形的性质、全等三角形的判定和性质,解题的关键是添加辅助线构造全等三角形,属于中考常考题型2、4【分析】过点D作DEBC于E,根据BD平分ABC性质得出AD=DE=4即可【详解】解:过点D作DEBC于E,BD平分ABC,A=90°,DEBC,AD=DE=4故答案为:4【点睛】本题考查点到直线的距离,角平分线性质,掌握点到直线的距离,角平分线性质是解题关键3、线段MN的垂直平分线(线段MN的中点除外)【分析】满足MNC以线段MN为底边且CMCN,根据线段的垂直平分线判定得到点C在线段AB的垂直平分线上,除去与MN的交点(交点不满足三角形的条件)【详解】解:MNC以线段MN为底边,CMCN,点C在线段MN的垂直平分线上,除去与MN的交点(交点不满足三角形的条件),以线段MN为底边的等腰三角形的顶点C的轨迹是:线段MN的垂直平分线(线段MN的中点除外)故答案为:线段MN的垂直平分线(线段MN的中点除外)【点睛】此题主要考查垂直平分线的判定,解题的关键是熟知等腰三角形的性质及垂直平分线的判定定理4、#【分析】分别求出时与时AB的长,故可求解【详解】如图,当时,连接ABOAB是等边三角形如图,当时,连接AB,过O点作OCABA=B=,AC=BCOC=cmAC=cmAB=2AC=cm,两点之间的距离扩大了()cm故答案为:【点睛】此题主要考查等腰三角形、等边三角形的判定与性质,解题的关键是熟知勾股定理、等腰三角形及含30°的直角三角形的性质5、9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果【详解】解:若9cm为底时,腰长应该是(24-9)=7.5cm,故三角形的三边分别为7.5cm、7.5cm、9cm,7.5+7.5=159,故能围成等腰三角形;若9cm为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm、9cm、6cm,6+9=159,以9cm、9cm、6cm为三边能围成三角形,综上所述,腰长是9cm或7.5cm,故答案为:9或7.5【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键三、解答题1、(1)见解析(2)CD,AC,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合【分析】(1)根据作法补全图形即可;(2)根据圆的半径相等,等腰三角形的性质即可得到结论(1)解:补全的图形如图所示:(2)证明:连接CD,BDBD=CD,AB=AC ,ADAB(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)(填推理的依据)故答案为:CD,AC,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是掌握等腰三角形的性质,灵活运用所学知识解决问题2、(1);(2)证明见详解;(3)为等边三角形,证明见详解【分析】(1)由题意及全等三角形的判定定理可得ACDBCE,再根据全等三角形的性质及三角形内角和外角的性质即可得出结果;(2)过点C作,由全等三角形的判定和性质可得:ACMBCN,利用角平分线的判定即可证明;(3)根据全等三角形的判定和性质可得:APCBQC,根据图形及角之间的关系可得,即可证明结论【详解】解:(1)如图所示:设BC与AD相交于点F,即,在与中,ACDBCE,故答案为:;(2)如图所示:过点C作,ACDBCE,在ACM与BCN中,ACMBCN,CH平分;(3)为等边三角形,理由如下:ACDBCE,P、Q为AD、BE中点,在与BQC中,APCBQC,为等边三角形【点睛】题目主要考查全等三角形的判定和性质,角平分线的判定和性质,三角形内角和定理等,理解题意,熟练掌握,综合运用这些知识点是解题关键3、(1)DEF是等边三角形,理由见解析(2)等边ABC的周长为【分析】(1)利用DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明DEF是等边三角形(2)利用题(1)的条件即DEC=150°,得出是含角的直角三角形,求出,最后求解出等边ABC的长,最后即可求出等边ABC的周长【详解】(1)解:DEF是等边三角形,证明:由点D、E、F的运动情况可知:,ABC是等边三角形,,,,,在与中, ,同理可证,进而有,故DEF是等边三角形(2)解:由(1)可知DEF是等边三角形,且, 在中, ,等边ABC的周长为【点睛】本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键4、25°【分析】直接利用等腰三角形的性质得出ABC=ACB=65°,进而利用三角形内角和定理得出答案【详解】AB=AC,A=50°,ABC=ACB=65°,CDBC于点D,BCD的度数为:180°90°65°=25°【点睛】此题主要考查了等腰三角形的性质,正确得出B的度数是解题关键5、(1)见解析;(2)见解析;(3)DAB=150°,见解析【分析】(1)依据题意作出相应图形即可;(2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,ACB=60°由同角的补角相等得CAO=CBE,由SAS证得CAO和CBE全等,即可得证;(3)由DAB=150°, DA=AB,得ADB=ABD=15°,由等边三角形性质,可得CAB=CBA=ACB =60°,故CAD=150°,由等边对等角得ADC=ACD=15°,由此DBC=DCB=75°,由等角对等边得DB=DC 再由POQ=120°,BDC=30°,得DFO=90°,等量代换即可得证.【详解】解:(1)如图所示:(2)证明如下:在BQ上截取BE=AO,连接CE,ABC为等边三角形,CA=CB,ACB=60°POQ=120°,CAO+CBO=180°CBO+CBE=180°,CAO=CBE,在CAO和CBE中,CAOCBE(SAS),CO=CE,COA=CEB,COE=CEB,COP=COQ; (3)DAB=150°,如图:DAB=150°, DA=AB,ADB=ABD=15°ABC为等边三角形,CAB=CBA=ACB =60°,CAD=150°,AD=AC,ADC=ACD=15°,DBC=DCB=75°,DB=DC,POQ=120°,BDC=30°,DFO=90°AD=AC,DF=FCDO=OC DB=DO+OB,DB=CO+OB,CD= OB + OC.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.