京改版七年级数学下册第八章因式分解章节测评试卷(名师精选).docx
-
资源ID:28187129
资源大小:204.14KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
京改版七年级数学下册第八章因式分解章节测评试卷(名师精选).docx
京改版七年级数学下册第八章因式分解章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中从左到右的变形中,是因式分解的是( )ABCD2、下列从左边到右边的变形中,是因式分解的是( )ABCD3、下列各组多项式中,没有公因式的是()Aaxby和by2axyB3x9xy和6y22yCx2y2和xyDa+b和a22ab+b24、能利用进行因式分解的是( )ABCD5、运用平方差公式对整式进行因式分解时,公式中的可以是( )ABCD6、多项式与的公因式是( )ABCD7、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A2560B490C70D498、下列由左到右的变形,是因式分解的是( )ABCD9、下列各式由左边到右边的变形中,是因式分解的为( )Aa(x+y)ax+ayB10x25x5x(2x1)Cx24x+4(x4)2Dx216+3x(x+4)(x4)+3x10、下列各式从左到右的变形属于因式分解的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_2、把多项式ax2-2axyay2分解因式的结果是_3、把多项式分解因式结果是_4、若,则的值为_5、分解因式:3ab6a2_三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1);(2)2、将下列各式分解因式:(1); (2)3、观察下列因式分解的过程:根据上述因式分解的方法,尝试将下列各式进行因式分解:(1);(2)4、因式分解:(x2+9)236x25、因式分解:(1)18x2y (2)a3 b2a2 b2ab3 -参考答案-一、单选题1、C【解析】【分析】由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可【详解】解:A、,是整式的乘法,不是因式分解故A错误;B、,是整式不是因式分解;C、,是因式分解;D、右边不是整式的积的形式(含有分式),不是因式分解;故选:C【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子2、A【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A是因式分解,故本选项符合题意;B等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解3、D【解析】【分析】直接利用公因式的确定方法:定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案【详解】解:A、by2axyy(axby),故两多项式的公因式为:axby,故此选项不合题意;B、3x9xy3x(13y)和6y22y2y(13y),故两多项式的公因式为:13y,故此选项不合题意;C、x2y2(xy)(xy)和xy,故两多项式的公因式为:xy,故此选项不合题意;D、ab和a22abb2(ab)2,故两多项式没有公因式,故此选项符合题意;故选:D【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键4、A【解析】【分析】根据平方差公式进行因式分解即可得【详解】解:A、,此项符合题意;B、不能利用进行因式分解,此项不符题意;C、不能利用进行因式分解,此项不符题意;D、不能利用进行因式分解,此项不符题意;故选:A【点睛】本题考查了利用平方差公式进行因式分解,熟记平方差公式是解题关键5、C【解析】【分析】运用平方差公式分解因式,后确定a值即可【详解】=,a是2mn,故选C【点睛】本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键6、B【解析】【分析】先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得【详解】解:,则多项式与的公因式是,故选:B【点睛】本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键7、B【解析】【分析】利用面积公式得到ab10,由周长公式得到a+b7,所以将原式因式分解得出ab(a+b)2将其代入求值即可【详解】解:长与宽分别为a、b的长方形,它的周长为14,面积为10,ab10,a+b7,a3b+2a2b2+ab3ab(a+b)210×72490故选:B【点睛】本题主要考查了因式分解和代数式求值,准确计算是解题的关键8、A【解析】【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了分解因式的定义解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式9、B【解析】【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可【详解】解:A. a(x+y)ax+ay,多项式乘法,故选项A不合题意B. 10x25x5x(2x1)是因式分解,故选项B符合题意;C. x24x+4(x2)2因式分解不正确,故选项C不合题意;D. x216+3x(x+4)(x4)+3x,不是因式分解,故选项D不符合题意故选B【点睛】本题考查因式分解,掌握因式分解的定义是解题关键10、B【解析】【分析】直接利用因式分解的定义分析得出答案【详解】A. 化为分式的积,不是因式分解,故该选项不符合题意;B. ,是因式分解,故该选项符合题意;C. ,不是积的形式,故该选项不符合题意; D. ,不是积的形式,故该选项不符合题意;故选B【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解二、填空题1、【解析】【分析】先提公因式,再利用完全平方公式分解即可【详解】解:=故答案为:【点睛】本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式2、【解析】【分析】先提公因式,然后根据完全平方公式因式分解即可【详解】解:原式,故答案为:【点睛】本题考查了提公因式法和公式法因式分解,熟练掌握完全平方公式的结构特点是解本题的关键3、【解析】【分析】利用平方差公式分解得到结果,即可做出判断【详解】解:= 故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键4、±1【解析】【分析】先把提取公因式,根据,求出的值,再根据,求出的值,即可得出的值【详解】解:,;故答案为:【点睛】此题考查了因式分解的应用,解决此类问题要整体观察,根据具体情况综合应用相关公式进行整体代入是解决这类问题的基本思想5、【解析】【分析】利用提公因式法进行因式分解即可得【详解】解:原式,故答案为:【点睛】本题考查了因式分解(提公因式法),熟练掌握因式分解的各方法是解题关键三、解答题1、(1);(2)【解析】【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可【详解】解:(1)原式=;(2)原式=【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键2、(1);(2)【解析】【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可【详解】解:(1)=;(2)= =【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解3、(1);(2)【解析】【分析】(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;(2)根据题中的方法分解因式即可【详解】解:(1);(2)【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解4、【解析】【分析】利用平方差公式和完全平方公式分解因式即可【详解】解: 【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式5、(1)2(3x+y)(3x-y);(2)ab(a+b)2【解析】【分析】(1)先提取公因式“2”,然后利用平方差公式分解因式即可;(2)先提取公因式“”,然后利用完全平方公式分解因式即可;【详解】解:(1) ;(2)【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法