欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考专题特训浙教版初中数学七年级下册第五章分式章节训练练习题(精选).docx

    • 资源ID:28188509       资源大小:342.08KB        全文页数:16页
    • 资源格式: DOCX        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考专题特训浙教版初中数学七年级下册第五章分式章节训练练习题(精选).docx

    初中数学七年级下册第五章分式章节训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、计算(2021)0的结果是( )A2021B2021C1D02、1纳米0.000000001米,则25纳米应表示为()A2.5×107B2.5×108C2.5×109D2.5×10103、年月日时分,我国成功发射了北斗系统第颗导航星,其授时精度为世界之最,不超过秒数据用科学记数法表示为()ABCD4、甲种细胞直径用科学记数法表示为,乙种细胞直径用科学记数法表示为,若甲、乙两种细胞直径的差用科学记数法表示为,则的值为( )A5B6C7D85、己知关于x的分式的解为非负数,则a的范围为( )A且B且C且D且6、若,则可用含和的式子表示为( )ABCD7、一项工作,甲、乙两人合作,4天可以完成他们合作了3天后,乙另有任务,甲单独又用了天才全部完成问甲、乙两人单独做,各需几天完成?设甲单独做需要x天,根据题意可列出方程()ABCD8、如图所示是番茄果肉细胞结构图,番茄果肉细胞的直径约为0.0006米,将0.0006用科学记数法表示为( )ABCD9、2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒将数据0.0000000099用科学记数法表示为( )ABCD10、在研制新冠肺炎疫苗过程中,某细菌的直径大小为米,用科学记数法表示这一数字,正确的是( )ABCD二、填空题(5小题,每小题4分,共计20分)1、以下结论:(ab)2(ba)2;(ab)3(ba)3;|ab|ba|;(ab)2a2b2;,其中正确结论的序号为 _2、=_;_3、计算:_4、已知,则_5、计算:22÷23_三、解答题(5小题,每小题10分,共计50分)1、计算:2、阅读下列材料,解决问题:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算时往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数和(或差)的形式,通过对简单式的分析来解决问题,我们称为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明将分式拆分成一个整式与一个分式(分子为整数)的和的形式解:这样,分式就拆分成一个整式x2与一个分式的和的形式(1)将分式拆分成一个整式与一个分子为整数的分式的和的形式,则结果为 (2)已知整数x使分式的值为整数,则满足条件的整数x 3、计算:(1)(2)4、将下列代数式按尽可能多的方法分类(至少写三种):5、观察下列等式:第一个等式:第二个等式:第三个等式:按上述规律,回答下列问题:(1)请写出第五个等式:;(2)用含n的式子表示第n个等式: (3)(得出最简结果)(4)计算:-参考答案-一、单选题1、C【分析】根据任何不为0的数的零次幂都等于1,可得答案【详解】解:a01 (a0),(2021)01,故选:C【点睛】本题考查零指数幂,掌握任何不为0的数的零次幂都等于1是得出正确答案的前提2、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:1纳米0.000000001米,25纳米应表示为:25×0.0000000012.5×108(m),故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:,故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定4、D【分析】先求出甲、乙两种细胞直径的差,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:8.05×1068.03×1060.02×1062×108故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、A【分析】先求出分式方程的解,然后根据分式方程的解是非负数以及分式有意义的条件求解即可.【详解】解:,分式方程的解为非负数且分式方程要有意义,解得且,故选A.【点睛】本题主要考查了解分式方程以及分式方程有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.6、D【分析】先将转化为关于b的整式方程,然后用a、s表示出b即可【详解】解:,s1,故选:D【点睛】本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤7、B【分析】设甲单独完成需要x天,根据题意列出方程即可求出答案【详解】解:设甲单独完成需要x天,由题意可知:两人合作的效率为,甲的效率为3××1,即故选B【点睛】本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型8、B【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0006=6×10-4 故选B【点睛】本题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定9、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为 a×,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数 n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解: 0.0000000099=,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为 a×,其中 1|a|<10 , n 为由原数左边起第一个不为零的数字前面的0的个数所决定10、C【分析】用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键二、填空题1、【分析】根据乘方的意义判断和,根据绝对值的概念判断,根据完全平方公式判断,根据异分母分式减法运算法则判断【详解】解:(ab)2(ba)2(ba)2,正确,故符合题意;(ab)3(ba)3(ba)3,原结论错误,故不符合题意;|ab|(ba)|ba|,正确,故符合题意;(ab)2a22ab+b2,原结论错误,故不符合题意;,原结论错误,故不符合题意;正确结论的序号为,故答案为:【点睛】本题考查绝对值的意义,乘方的运算,分式的加减法,完全平方公式,理解乘方和绝对值的意义,掌握完全平方公式(a±b)2a2±2ab+b2的结构是解题关键2、-0.125 【分析】根据积的乘方逆运算、零指数幂与负指数幂的性质即可求解【详解】;故答案为:-0.125;【点睛】此题主要考查实数的运算,解题的关键是熟知幂的运算公式及零指数幂与负指数幂的性质3、【分析】负整数指数幂:;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,据此计算即可【详解】解:故答案为:【点睛】本题考查了同底数幂的乘法以及负整数指数幂,掌握幂的运算法则是解答本题的关键4、【分析】先将已知的式子化为倒数形式 ,化简后两边平方,再把所要求的式子的倒数化简求值,可得到最终结果【详解】, 故答案为:【点睛】考查分式值的计算,有一定灵活性,解题的关键是先求倒数5、2【分析】根据同底数幂的除法法则,即可求解【详解】解:22÷23=22-(-3)=2,故答案是:2【点睛】本题主要考查同底数幂的除法法则,负整数指数幂,熟练掌握同底数幂相除,底数不变,指数相减,是解题的关键三、解答题1、5【分析】先化简绝对值、计算零指数幂、负整数指数幂、去括号,再计算加减法即可得【详解】解:原式,【点睛】本题考查了零指数幂、负整数指数幂等知识点,熟练掌握各运算法则是解题关键2、(1);(2)2或4或-10或16【分析】(1)按照定义拆分即可,(2)先将拆分为一个整式与一个分式的和的形式,若要值为整数,只需为整数即可,故x=2或4或-10或16【详解】(1)(2)若要值为整数,只需为整数即可当x=2时当x=4时当x=-10时当x=16时故x=2或4或-10或16【点睛】本题考查了分式的化简构造新形式以及求使分式值为整数的未知数,理解逆用分数加减法的化简方法是解题的关键3、(1)0;(2)【分析】(1)先根据负整数指数幂,零指数幂和有理数的乘方进行计算,再算加减即可;(2)先根据平方差公式和单项式乘多项式进行计算,再合并同类项即可【详解】解:(1)原式;(2)原式【点睛】本题考查了零指数幂,负整数指数幂,有理数的混合运算,整式的混合运算等知识点,能灵活运用有理数的运算法则和整式的运算法则进行计算是解此题的关键,注意运算顺序4、见详解【分析】根据整式和分式分类,单项式,多项式,分式分类,单项式二项式,四项式,分式分类,即可【详解】解:整式:分式:;单项式:多项式:分式:;单项式:二项式:四项式:分式:【点睛】本题主要考查整式,单项式,多项式的概念,熟练掌握整式,单项式、多项式的定义是解题的关键5、(1),;(2),(3);(4)【分析】(1)根据已知4个等式对比发现规律可得;(2)根据已知等式列出算式即可;(3)根据已知等式的规律列出算式,然后计算化简后的算式即为所求;(4)根据已知等式的规律列出算式,然后裂项相消,计算化简后的算式即为所求【详解】(1)观察得a5=;(2)观察得an=;(3);(4);【点睛】本题考查了分式的四则运算及数式的规律探究来理解裂项相消法,考验学生的阅读理解能力

    注意事项

    本文(中考专题特训浙教版初中数学七年级下册第五章分式章节训练练习题(精选).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开