模拟真题:2022年北京市门头沟区中考数学三年真题模拟-卷(Ⅱ)(含答案解析).docx
-
资源ID:28188751
资源大小:890.36KB
全文页数:23页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
模拟真题:2022年北京市门头沟区中考数学三年真题模拟-卷(Ⅱ)(含答案解析).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年北京市门头沟区中考数学三年真题模拟 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,OM平分,则( )A96°B108°C120°D144°2、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:火车的速度为30米/秒;火车的长度为120米;火车整体都在隧道内的时间为35秒;隧道长度为1200米其中正确的结论是( )ABCD3、已知关于x,y的方程组和的解相同,则的值为( )A1B1C0D20214、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是()A轴B轴C直线(直线上各点横坐标均为1)D直线(直线上各点纵坐标均为1)5、下列计算错误的是()ABCD6、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于()A1B1C2D27、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )A200(1 + a)2 = 148B200(1 - a)2 = 148C200(1 - 2a)2 = 148D200(1 - a 2)= 1488、对于二次函数yx22x3,下列说法不正确的是( )A开口向下B当x1时,y随x的增大而减小C当x1时,y有最大值3D函数图象与x轴交于点(1,0)和(3,0)9、为庆祝中国共产党成立100周年,某学校开展学习“四史”(党史、新中国史、改革开放史、社会主义发展史)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到新中国史这本书的概率为()· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·ABCD110、如图,已知ABC与ABC是位似图形,点O是位似中心,若A是OA的中点,则AB'C与ABC的面积比是()A1:4B1:2C2:1D4:1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数y1x2+bx+c和反比例函数y2在同一个坐标系中的图象如图所示,则不等式x2+bx+c的解集是 _2、如图,在ABC中,点D、E分别在边AB、AC上,DEBC,将ADE沿直线DE翻折后与FDE重合,DF、EF分别与边BC交于点M、N,如果DE8,那么MN的长是_3、计算:_;4、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为_5、如图,若,平分,则的度数是_三、解答题(5小题,每小题10分,共计50分)1、如图,AB是O的直径,弦CDAB,垂足为E,F为AB延长线上一点,连接CF,DF(1)若OE3,BE2,求CD的长;(2)若CF与O相切,求证DF与O相切2、化简:(1);(2)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·3、一个角的补角比它的余角的3倍少,求这个角的度数4、如图,抛物线yx22x+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(0,3)(1)求AB的长(2)将点A向上平移n个单位至点E,过点E作DFx轴,交抛物线与点D,F当DF6时,求n的值5、已知顶点为D的抛物线交y轴于点,且与直线l交于不同的两点A、B(A、B不与点D重合)(1)求抛物线的解析式;(2)若,试说明:直线l必过定点;过点D作,垂足为点F,求点C到点F的最短距离-参考答案-一、单选题1、B【分析】设,利用关系式,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值【详解】解:设,OM平分,解得故选:B【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线2、D【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒故正确;火车的长度是150米,故错误;整个火车都在隧道内的时间是:45-5-5=35秒,故正确;隧道长是:45×30-150=1200(米),故正确故选:D【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决3、B【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求【详解】解:联立得:,解得:,则有,解得:,故选:B【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值4、C【分析】利用成轴对称的两个点的坐标的特征,即可解题【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为故选:C【点睛】本题考查坐标与图形变化轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键5、A【分析】直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可【详解】解:A,故此选项计算错误,符合题意;B,故此选项计算正确,不合题意;C,故此选项计算正确,不合题意;D,故此选项计算正确,不合题意;故选:A【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键6、B【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得【详解】解:与点关于y轴对称,故选:B【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键7、B【分析】第一次降价后价格为,第二次降价后价格为整理即可【详解】解:第一次降价后价格为第二次降价后价格为故选B【点睛】本题考查了一元二次方程的应用解题的关键在于明确每次降价前的价格8、C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】解:y=-x2+2x+3=-(x-1)2+4,a=-10,该函数的图象开口向下,故选项A正确;对称轴是直线x=1,当x1时,y随x的增大而减小,故选项B正确;顶点坐标为(1,4),当x=1时,y有最大值4,故选项C不正确;当y=0时,-x2+2x+3=0,解得:x1=-1,x2=3,函数图象与x轴的交点为(-1,0)和(3,0),故D正确故选:C【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解答9、A【分析】直接根据概率公式求解即可【详解】解:由题意得,他恰好选到新中国史这本书的概率为,故选:A【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比10、A【分析】根据位似图形的概念得到ABCABC,ABAB,根据OABOAB,求出,根据相似三角形的性质计算,得到答案【详解】解:ABC与ABC是位似图形,ABCABC,ABAB,OABOAB,AB'C与ABC的面积比为1:4,故选:A【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键二、填空题1、或【分析】根据,即是二次函数图象在反比例函数下方,再结合图象可直接求出其解集【详解】根据题意要使,即二次函数图象在反比例函数下方即可根据图象可知当或时二次函数图象在反比例函数下方,的解集是或故答案为:或【点睛】本题考查反比例函数和二次函数综合,掌握函数图像的交点坐标与不等式的关系,是解题的关键2、4【分析】先根据折叠的性质得DADF,ADEFDE,再根据平行线的性质和等量代换得到BBMD,则DBDM,接着利用比例的性质得到FMDM,然后证明FMNFDE,从而利用相似比可计算出MN的长【详解】解:ADE沿直线DE翻折后与FDE重合,DADF,ADEFDE,DEBC,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·ADEB,FDEBMD,BBMD,DBDM, ,2,2,FMDM,MNDE,FMNFDE, ,MNDE×84故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键3、【分析】根据二次根式的乘法法则:(a0,b0)计算【详解】解:原式=,故答案为:【点睛】本题考查了二次根式的乘除法,掌握二次根式的乘法法则,最后的化简是解题关键4、#【分析】设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.【详解】解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为: 去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为: 则今年甲品种水果的平均亩产量为: 乙品种水果的平均亩产量为: 丙品种的平均亩产量为 设今年的种植面积分别为: 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,解得: 又丙品种水果增加的产量占今年水果总产量的,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · · 解得: 所以三种水果去年的种植总面积与今年的种植总面积之比为: 故答案为:【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.5、【分析】先求解 利用角平分线再求解 由可得答案.【详解】解: , 平分, 故答案为:【点睛】本题考查的是垂直的定义,角平分线的定义,角的和差运算, 熟练的运用“角的和差关系与角平分线的定义”是解本题的关键.三、解答题1、(1)8;(2)见解析【分析】(1)连接OC,利用勾股定理求解CE4,再利用垂径定理可得答案;(2)证明 再证明 可得 从而可得结论.【详解】(1)解:连接OC,CDAB,CEDE,OCOBOEBE325, 在RtOCE中,OEC90°,由勾股定理得:CE2OC2OE2,CE25232,CE4, CD2CE8. (2)解:连接OD,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·CF与O相切,OCF90°,CEDE,CDAB,CFDF, 又OFOF,OCOD, OCFODF,ODFOCF90°,即ODDF 又D在O上, DF与O相切【点睛】本题考查的是圆的基本性质,垂径定理的应用,切线的性质与判定,证明OCFODF得到ODFOCF90°是解本题的关键.2、(1);(2)【分析】(1)直接利用整式的加减运算法则化简得出答案;(2)整式的加减,正确去括号、合并同类项即可【详解】解:(1);(2),【点睛】本题主要考查了整式的加减,正确去括号、合并同类项解题的关键是掌握相应的运算法则3、这个角的度数是【分析】设这个角为,根据题意列方程求解即可【详解】解:设这个角为,则余角为,补角为,由题意得:,解得:答:这个角的度数是【点睛】本题考查了一元一次方程的应用,以及余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角4、(1)AB的长为4;(2)n的值为5【分析】(1)利用二次函数表达式,求出其与x轴的交点、的坐标,其横坐标之差的绝对值即为AB的长· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)利用二次函数的对称性,求出F点的横坐标,代入二次函数表达式,求出纵坐标,最后求得n的值【详解】(1)解:把(0,-3)代入y=x2-2x-c得c=-3,令y=x2-2x-3=0,解得x1=3,x2=-1,A(-1,0),B(3,0),AB=3-(-1)=4(2)解:作对称轴x=1交DF于点G,G点横坐标为1,如图所示:由题意可设:点F坐标为(,),、关于二次函数的对称轴 DG=GF=3, ,n=5【点睛】本题主要是考查了二次函数与x轴交点坐标以及二次函数的对称性,熟练应用二次函数的对称性进行解题,是求解这类二次函数题目的关键5、(1)(2)见解析;【分析】(1)将点代入即可求得的值,继而求得二次函数的解析式;(2)设直线的解析为,设,则, 联立直线解析式和抛物线解析式,根据根与系数的关系求得进而求得,证明,根据相似比求得,进而根据两个表达式相等从而得出与的关系式,代入直线解析式,根据直线过定点与无关,进而求得定点坐标;设,由可知经过点,则, ,进而根据90°圆周角所对的弦是直径,继而判断的轨迹是以的中点为圆心,为直径的圆,根据点与圆的位置即可求得最小值(1)解:抛物线交y轴于点,解得抛物线为(2)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·如图,过点分别作轴的垂线,垂足分别为,设直线的解析为,设,则, 则的坐标即为的解即,轴,轴或或当时,则过定点 A、B不与点D重合则此情况舍去;当时,即过定点必过定点如图,设,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,,在以的中点为圆心,为直径的圆上运动的最小值为【点睛】本题考查了待定系数法求二次函数解析式,相似三角形的性质与判定,一元二次方程根与系数的关系,点与圆的位置关系求最值,勾股定理,二次函数与直线交点问题,掌握以上知识是解题的关键