2022年最新精品解析沪科版八年级下册数学期末定向攻克-卷(Ⅱ)(含答案及解析).docx
-
资源ID:28188909
资源大小:563.03KB
全文页数:28页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新精品解析沪科版八年级下册数学期末定向攻克-卷(Ⅱ)(含答案及解析).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·沪科版八年级下册数学期末定向攻克 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,长方形OABC中,点A在y轴上,点C在x轴上,点D在边AB上,点E在边OC上,将长方形沿直线DE折叠,使点B与点O重合则点D的坐标为( )ABCD2、一元二次方程的一次项系数是( )ABC2D3、如图,长为的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升到D点,则橡皮筋被拉长了( )ABCD4、下列运算正确的是( )ABCD5、如图,在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片如果按图方式摆放,刚好放下4个;如果按图方式摆放,刚好放下3个若BC4a,则按图方式摆放时,剩余部分CF的长为( )ABCD6、实数a,b在数轴上的位置如图所示,化简的结果是( )ABCD7、探索一元二次方程x2+3x50的一个正数解的过程如表:x101234x2+3x575151323· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·可以看出方程的一个正数解应界于整数a和b之间,则整数a、b分别是()A1,0B0,1C1,2D1,58、若菱形的两条对角线长分别为10和24,则菱形的面积为()A13B26C120D2409、如图,五根小木棒,其长度分别为5,9,12,13,15,现将它们摆成两个直角三角形,其中正确的是( )ABCD10、下列条件中,不能判定一个四边形是平行四边形的是( )A一组对边平行且相等B对角线互相平分C两组对角分别相等D一组对边平行,另一组对边相等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、ABO是边长为2的等边三角形,则任意一边上的高长为_2、若是一元二次方程的一个根,则方程的另一个根是_3、如图,点P是AOB的角平分线上一点,过点P作PCOA交OB于点C,过点P作PDOA于点D,若AOB60°,OC2,则PD_4、如图,在平面直角在坐标系中,四边形OACB的两边OA,OB分别在x轴、y轴的正半轴上,其中,且CO平分,若,则点C的坐标为_5、设m、n分别为一元二次方程x2+2x130的两个实数根,则m2+3m+n的值为 _三、解答题(5小题,每小题10分,共计50分)1、解下列方程:(1);(2)2、如图,已知在RtABC中,ACB90°,AC8,BC16,D是AC上的一点,CD3点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动设点P的运动时间为连接AP· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)当t3秒时,求AP的长度(结果保留根号);(2)当点P在线段AB的垂直平分线上时,求t的值;(3)过点D作DEAP于点E在点P的运动过程中,当t为何值时,能使DECD?3、已知:如图,四边形ABCD中,ABBC,AB1,BC2,CD2,AD3,(1)求AC的长;(2)求证:ACD是直角三角形;(3)四边形ABCD的面积4、已知一个正多边形一个内角等于一个外角的倍,求这个正多边形的边数5、小乾同学提出一种新图形定义:一组对边相等且垂直的四边形叫等垂四边形如图1,四边形ABCD中,AB=CD,ABCD,四边形ABCD即为等垂四边形,其中相等的边AB、CD称为腰,另两边AD、BC称为底(1)性质初探:小乾同学探索了等垂四边形的一些性质,请你补充完整:等垂四边形两个钝角的和为 °;若等垂四边形的两底平行,则它的最小内角为 °(2)拓展研究:小坤同学发现两底中点的连线与腰长有特定的关系,如图2,M、N分别为等垂四边形ABCD的底AD、BC的中点,试探索MN与AB的数量关系,小坤的想法是把其中一腰绕一个中点旋转180°,请按此方法求出MN与AB的数量关系,并写出AB与MN所在直线相交所成的锐角度数如图1,等垂四边形ABCD的腰为AB、CD,AB=CD=AD=3,则较长的底BC长的取值范围是 (3)实践应用:如图3,直线l1,l2是两条相互垂直的公路,利用三段围栏AB、BC、AD靠路边按如图方式围成一块四边形种植园,第四条边CD做成一条隔离带,已知AB=250米,BC=240米,AD=320米,此隔离带最长为多少米?-参考答案-一、单选题1、C【分析】设AD=x,在RtOAD中,据勾股定理列方程求出x,即可求出点D的坐标【详解】解:设AD=x,由折叠的性质可知,OD=BD=8-x,在RtOAD中,OA2+AD2=OD2,42+x2=(8-x)2,x=3,D,故选C【点睛】本题考查了矩形的性质,勾股定理,以及折叠的性质,熟练掌握勾股定理是解答本题的关键直角三· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·角形两条直角边的平方和等于斜边的平方2、D【分析】根据一元二次方程的一般形式中,叫做方程的一次项,其中是一次项系数进行解答【详解】解:一元二次方程的一次项系数是,故选:D【点睛】本题考查了一元二次方程的一般形式及其各项的概念,掌握一元二次方程的一般形式中,叫做方程的二次项,其中是二次项系数,叫做方程的一次项,其中是一次项系数,叫做方程的常数项是解题关键3、A【分析】根据勾股定理,可求出AD长,再证明ADCBDC(SAS),可得AD=BD=5cm,求出AD+BD-AB即为橡皮筋拉长的距离【详解】解:点C为线段AB的中点,AC=AB=4cm,RtACD中, CD=3cm;根据勾股定理,得:AD=5(cm);CDAB,DCA=DCB=90°,在ADC和BDC中,ADCBDC(SAS),AD=BD=5cm,AD+BD-AB=2AD-AB=10-8=2cm;橡皮筋被拉长了2cm故选:A【点睛】本题主要考查了勾股定理的应用,三角形全等判定与性质,线段中点定义,解题的关键是勾股定理的应用,三角形全等判定与性质,线段中点定义,灵活运用所学知识解决问题4、D【分析】根据二次根式的加减,二次根式的性质,计算选择即可【详解】不是同类项,无法计算,A计算错误;不是同类项,无法计算,B计算错误;, C计算错误;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,D计算正确;故选D【点睛】本题考查了二次根式的加减,二次根式的性质,熟练掌握,是解题的关键5、A【分析】由题意得出图中,BE=a,图中,BE=a,由勾股定理求出小直角三角形的斜边长为a,进而得出答案【详解】解:BC=4a,图中,BE=a,图中,BE=a,小直角三角形的斜边长为,图中纸盒底部剩余部分CF的长为4a-2×a=a;故选:A【点睛】本题考查了矩形的性质以及勾股定理;熟练掌握矩形的性质和勾股定理是解题的关键6、D【分析】根据题意得出b01a,进而化简求出即可【详解】解:由数轴可得:b01a,则原式=a-b故选:D【点睛】本题主要考查了二次根式的性质与化简,正确得出a,b的符号是解题关键7、C【分析】根据表格中的数据,可以发现当时,当时,从而可以得到整数、的值【详解】解:由表格可得,当时,当时,的一个正数解为1和2之间,的一个正数解应界于整数和之间,、分别是1,2,故选:C【点睛】本题考查估算一元二次方程的近似解,解题的关键是明确题意,由表格中的数据,可以估算出方程的解所在的范围· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·8、C【分析】根据菱形的面积公式即可得到结论【详解】解:菱形的两条对角线长分别为10和24,菱形的面积为,故选:C【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的面积公式9、C【分析】根据勾股定理的逆定理逐一判断即可【详解】A、对于ABD,由于,则此三角形不是直角三角形,同理ADC也不是直角三角形,故不合题意;B、对于ABC,由于,则此三角形不是直角三角形,同理ADC也不是直角三角形,故不合题意;C、对于ABC,由于,则此三角形是直角三角形,同理BDC也是直角三角形,故符合题意;D、对于ABC,由于,则此三角形不是直角三角形,同理BDC也不是直角三角形,故不合题意故选:C【点睛】本题考查了勾股定理的逆定理,其内容是:两条短边的平方和等于长边的平方,则此三角形是直角三角形,为便于利用平方差公式计算,常常计算两条长边的平方差即两条长边的和与这两条长边的差的积,若等于最短边的平方,则此三角形是直角三角形10、D【分析】根据平行四边形的判定方法一一判断即可;【详解】解:A、一组对边平行且相等的四边形是平行四边形,故本选项不符合题意;B、对角线互相平分的四边形是平行四边形,故本选项不符合题意;C、两组对角分别相等的四边形是平行四边形,故本选项不符合题意;D、一组对边平行,另一组对边相等的四边形还可能是等腰梯形,本选项符合题意;故选:D【点睛】本题考查平行四边形的判定方法,解题的关键是熟练掌握平行四边形的判定方法二、填空题1、【分析】根据等边三角形的性质:三线合一,利用勾股定理可求解高【详解】解:根据等边三角形:三线合一,所以它的高为:,故答案为【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题考查等边三角形的性质及勾股定理,较为简单,解题的关键是掌握勾股定理2、7【分析】把代入方程中得到关于字母c的一元一次方程,解此方程解得c的值,再利用因式分解法解一元二次方程即可【详解】解:把代入方程中得解得把代入原方程得故答案为:7【点睛】本题考查方程的解,解一元一次方程、解一元二次方程等知识,是重要考点,难度较易,掌握相关知识是解题关键3、【分析】作,则,由等腰三角形的性质可得,在中,利用勾股定理即可求解【详解】解:作,如下图:平分,在中,由勾股定理得,故答案为:【点睛】此题考查了角平分线的性质,勾股定理,三角形外角的性质,等腰三角形的判定与性质以及含直角三角形的性质等,解题的关键是灵活运用相关性质进行求解4、【分析】取AB的中点E,连接OE,CE并延长交x轴于点F,根据直角三角形斜边 上的中线等于斜边的一半证· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·明CE=OE=AE,再进一步证明;由勾股定理求出AB=,AO=BO=5;过点O作OGOC交CA的延长线于点G,证明COG访问团等腰直角三角形,可可求出OC=7;过点C作CHx轴,垂足为H,设C(m,n),则OH=m,CH=n,AH=5-m,根据勾股定理可得方程组 ,求出方程组的解,取正值即可【详解】解:取AB的中点E,连接OE,CE并延长交x轴于点F,如图,OC平分ACB, 均为直角三角形, 是等腰直角三角形, 由勾股定理得, 过点O作OEOC交CA的延长线于点G,OCA=45°,G=45°,COG为等腰直角三角形,OC=OG,BOC+COA=COA+AOG=90°,BOC=AOG,OCB=OEA=45°,COBGOA(ASA),BC=AG=,CG=AC+AG=· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·OCE为等腰直角三角形,OC=7过点C作CHx轴于点H,设C(m,n),OH=m,CH=n,AH=5-m在RtCHO和RtCHA中,由勾股定理得,解得,(负值舍去)C()故答案为:()【点睛】本题主要考查了坐标玮图形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键5、11【分析】由m,n分别为一元二次方程x2+2x130的两个实数根,推出m+n=-2,m2+2m=13,由此即可解决问题【详解】解:m、n分别为一元二次方程x2+2x130的两个实数根,m+n=-2,m2+2m=13,则原式=m2+2m+m+n=m2+2m+(m+n)=13-2=11故答案为:11【点睛】本题考查根与系数关系,解题的关键是记住x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=-,x1x2=三、解答题1、(1)(2)【分析】(1)直接利用因式分解法解方程即可;(2)用配方法解方程即可(1)(2)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】本题主要考查一元二次方程的解法,熟练掌握各种解法是解题的关键2、(1)(2)5(3)t为5或11【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)当点P在线段AB的垂直平分线上时,则PA=PB,再根据勾股定理列方程即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解(1)根据题意,得BP=2t,PC=162t=162×3=10,AC=8,在RtAPC中,根据勾股定理,得:AP2答:AP的长为;(2)当点P在线段AB的垂直平分线上时,则PA=PB,BP=2t,PC=162t, AC=8,PA=PB=2t,ACB90°,则,即,解得t=5;答:当点P在线段AB的垂直平分线上时t=5;(3)若P在C点的左侧,CP=162t,DE=DC=3,AD=8-3=5,AP=,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解得:t=5,t=11(舍去);若P在C点的右侧,CP=2t16,DE=DC=3,AD=8-3=5同理:AP=,解得:t=5(舍去),t=11;答:当t为5或11时,能使DE=CD【点晴】本题考查了等腰三角形的性质、勾股定理,根据求一个数的平方根解方程,解决本题的关键是动点运动到不同位置时分类讨论3、(1)(2)见解析(3)【分析】(1)直接根据勾股定理求出AC的长即可;(2)在ACD中,由勾股定理的逆定理即可判断三角形的形状;(3)分别计算出ABC和ACD的面积,然后相加即可得四边形ABCD的面积(1)B=90°,AB=1,BC=2,AC2=AB2+BC2=1+4=5,;(2)ACD中,AC=,CD=2,AD=2,AC2+CD2=5+4=9,AD2=9,AC2+CD2=AD2,ACD是直角三角形(3)四边形ABCD的面积:【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键4、5【分析】多边形的内角和可以表示成(n-2)180°,外角和是固定的360°,从而可根据一个正多边形的一个内角等于一个外角的列方程求解可得【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:设此正多边形为正n边形正多边形的一个内角等于一个外角的,此正多边形的内角和等于其外角和的,×360°=(n-2)180°,解得n=5答:正多边形的边数为5【点睛】本题考查正多边形的内角和与外角和关键是记住内角和的公式与外角和的特征5、(1)270;45;(2),AB与MN所在直线相交所成的锐角度数为45°,理由见解析;(3)650米【分析】(1)延长CD与BA延长线交于点P,则P=90°,可以得到B+C=90°,再由B+C+BAD+ADC=360°,即可得到BAD+ADC=270°;延长CD交BA延长线于P,过点D作DEAB交BC于E,则DEC=B,由等垂四边形的两底平行,即ADBC,可证四边形ABED是平行四边形,得到DE=AB,再由AB=CD,ABCD得到DE=CD,DECD,则DEC=C=45°,即四边形ABCD的最小内角为45°;(2)延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180°得到DE,连接CE,BE,由旋转的性质可得:MB=ME,AB=DE,ABM=DEM,则CD=AB=DE,ABDE,即可推出DEC=DCE,EDC=EDP=BPD=90°,由勾股定理得到,DEC=DCE=45°,再证MN是BCE的中位线,得到,MNCE,则NQC=DCE=45°,由此即可推出直线AB与直线MN所在直线相交所成的锐角度数为45°;延长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得APD=90°,则,即,由(2)可知,即可推出,再由PMN随着PA减小而减小,当点P与点A重合时,PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:,则;(3)仿照(2)进行求解即可(1)解:如图所示,延长CD与BA延长线交于点P,四边形ABCD为等垂四边形,即AB=CD,ABCD,P=90°,B+C=90°,B+C+BAD+ADC=360°,BAD+ADC=270°,故答案为:270;如图所示,延长CD交BA延长线于P,过点D作DEAB交BC于E,DEC=B,等垂四边形的两底平行,即ADBC,四边形ABED是平行四边形,DE=AB,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·又AB=CD,ABCDDE=CD,DECD,DEC=C=45°,四边形ABCD的最小内角为45°,故答案为:45;(2)解:,AB与MN所在直线相交所成的锐角度数为45°,理由如下:延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180°得到DE,连接CE,BE,四边形ABCD是等垂四边形,AB=CD,ABCD,BPC=90°,M是AD的中点,MA=MD,由旋转的性质可得:MB=ME,AB=DE,ABM=DEM,CD=AB=DE,ABDE,DEC=DCE,EDC=EDP=BPD=90°,DEC=DCE=45°,又M、N分别是BE,BC的中点,MN是BCE的中位线,MNCE,NQC=DCE=45°,BPC=90°,QPF=90°,QFP=45°,直线AB与直线MN所在直线相交所成的锐角度数为45°;如图所示,延长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得APD=90°,即,由(2)可知,又PMN随着PA减小而减小,当点P与点A重合时,PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故答案为:;(3)解:如图所示,取AB,CD的中点M,N,连接MN,作点C关于M的对称点E,连接CE,AE,DE,设直线l1与直线l2交于点P,由(2)可知,AEBC,AE=BC=240米,l1l2,APB=PAE=90°,DAE=90°,米,M、N分别是CE,CD的中点,MN是CED的中位线,米,MNDE,M为AB的中点,APB=90°,米,同理可得,即米,米,隔离带最长为650米【点睛】本题主要考查了等腰直角三角形的性质与判定,三角形中位线定理,直角三角形斜边上的中线,勾股定理,三角形三边的关系等等,解题的关键在于能够正确理解题意作出辅助线求解