2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题月考试题(含答案解析).docx
-
资源ID:28189867
资源大小:653.49KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题月考试题(含答案解析).docx
第二十六章 综合运用数学知识解决实际问题月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,则( )A64B52C24D162、数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是,这种说明问题的方式体现的数学思想方法叫做( )A代入法B换元法C数形结合D分类讨论3、下列方程中是二项方程的是( )A;B=0;C;D=14、对于题目:“如图1,平面上,正方形内有一长为、宽为的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长,再取最小整数甲:如图2,思路是当为矩形对角线长时就可移转过去;结果取乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n14丙:如图4,思路是当为矩形的长与宽之和的倍时就可移转过去;结果取下列正确的是()A甲的思路错,他的值对B乙的思路和他的值都对C甲和丙的值都对D甲、乙的思路都错,而丙的思路对5、若质数a,b满足,则数据a,b,2,3的中位数是( )A4B7C4或7D4.5或6.56、设三位数,若为三条边的长可以构成一个等腰(含等边)三角形,这样的三位数n有( )个A126B144C165D1747、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的天数据,整理后绘制成统计表进行分析日均可回收物回收量(千吨)合计频数123频率0.050.100.151表中组的频率满足下面有四个推断:表中的值为20;表中的值可以为7;这天的日均可回收物回收量的中位数在组;这天的日均可回收物回收量的平均数不低于3所有合理推断的序号是( )ABCD8、某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:从扇形图中分析出最受学生欢迎的种类去图书馆收集学生借阅图书的记录绘制扇形图来表示各个种类所占的百分比整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()ABCD9、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°0.6,cos35°0.8,tan35°0.7,sin65°0.9,cos65°0.4,tan65°2.1)()A3.2米B3.9米C4.7米D5.4米10、如图A、B、C是固定在桌面上的三根立柱,其中A柱上穿有三个大小不同的圆片,下面的直径总比上面的大现想将这三个圆片移动到B柱上,要求每次只能移动一片(叫移动一次),被移动的圆片只能放入A、B、C三个柱之一且较大的圆片不能叠在小片的上面,那么完成这件事情至少要移动圆片的次数是()A6B7C8D9第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、以下是小亮的妈妈做晚饭的食材准备及加工时间列表,有一个炒菜锅,一个电饭煲,一个煲汤锅,两个燃气灶可用,做好这顿晚餐一般情况下至少需要_分钟用时种类准备时间(分钟)加工时间(分钟)米饭330炒菜156炒菜258汤5152、定义一种新运算“”规则如下:对于两个有理数,若,则_3、砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,接着把编号是3的整数倍的“金蛋”全部砸碎按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止操作过程中砸碎编号是“60”的“金蛋”共_个。4、勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km)笔直铁路经过A,B两地(1)A,B间的距离为_km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为_km5、将非零自然数按照下图中规律排列,有些数会多次出现,有些数永远不会出现请问88在图中共出现了_次,永远不会出现的数中最小的自然数是_12349798992345989910045671011021037891010310410511121314107108109三、解答题(5小题,每小题10分,共计50分)1、(1)在遇到问题:“钟面上,如果把时针与分针看作是同一平面内的两条线段,在200215之间,时针与分针重合的时刻是多少?”时,小明尝试运用建立函数关系的方法:恰当选取变量x和y小明设2点钟之后经过x min(0x15),时针、分针分别与竖轴线(即经过表示“12”和“6”的点的直线,如图1)所成的角的度数为y1°、y2°;确定函数关系由于时针、分针在单位时间内转动的角度不变,因此既可以直接写出y1、y2关于x的函数关系式,也可以画出它们的图象小明选择了后者,画出了图2;根据题目的要求,利用函数求解本题中小明认为求出两个图象交点的横坐标就可以解决问题请你按照小明的思路解决这个问题(2)请运用建立函数关系的方法解决问题:钟面上,如果把时针与分针看作是同一平面内的两条线段,在730800之间,时针与分针互相垂直的时刻是多少?2、已知函数,分别按下列要求求实数a的取值范围;(1)方程有实根;(2)方程有两个不等实根;(3)方程在有且只有一个实根3、已知、两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从地匀速开往地,乙车从地沿此公路匀速开往地,两车分别到达目的地后停止甲、乙两车相距的路程(千米)与甲车的行驶时间(时)之间的函数关系如图所示(1)乙车的速度为 千米/时, , (2)求甲、乙两车相遇后与之间的函数关系式(3)当甲车到达距地70千米处时,求甲、乙两车之间的路程4、在金融危机中,某钢材公司积压了部分圆钢,经清理知共有2009根现将它们堆放在一起 (1)若堆放成纵断面为正三角形(每一层的根数比上一层根数多1根),并使剩余的圆钢尽可能地少,则剩余了多少根圆钢?(2)若堆成纵断面为等腰梯形(每一层的根数比上一层根数多1根),且不少于七层,()共有几种不同的方案?()已知每根圆钢的直径为,为考虑安全隐患,堆放高度不得高于,则选择哪个方案,最能节省堆放场地?5、某种易拉罐呈圆柱状,其底面直径为7 cm,将6个这样的易拉罐如下图堆放,求这6个易拉罐所占的宽度与高度-参考答案-一、单选题1、B【分析】将两边平方,得到,再将运用立方差公式变形,把和代入即可求值.【详解】解:,=4×13=52.故选B.【点睛】本题考查了代数式求值,解题的关键是掌握立方差公式,难度不大.2、C【分析】根据ABCD的四种数学思想结合题目的条件即可判定求解【详解】解:数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是,这种利用图形直观说明问题的方式A、B、D的说法显然不正确,本题是把数与数轴上的点相联系,是数形结合的思想方法故选:C【点睛】本题考查的是数学思想方法,做这类题,可用逐个排除法,显然A、B、D所说方法不对3、C【解析】【分析】二项方程:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程据此可以判断.【详解】A. ,有2个未知数项,故不能选; B. =0,没有非0常数项,故不能选; C. ,符合要求,故能选; D. =1,有2个未知数项,故不能选故选C【点睛】本题考核知识点:二项方程.解题关键点:理解二项方程的定义.4、B【分析】根据矩形的性质和勾股定理求出矩形的对角线长,即可判断甲和乙,丙中图示情况不是最长【详解】甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确,n=14;丙的思路与计算都错误,图示情况不是最长,n=(12+6)×=13故选B【点睛】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键5、C【分析】根据题意可得到,从而得到方程或或或,依此可求,的值,再根据中位数的定义即可求解【详解】解:质数,满足,即,或或或,解得或2,3,5,7的中位数是4;2,3,11,13的中位数是7故选:【点睛】本题主要考查了质数的计算,首先确定,的值是解决本题的关键6、C【分析】先考虑等边三角形情况,则a=b=c=1,2,3,4,5,6,7,8,9,此时n有9个,再考虑等腰三角形情况,若a,b是腰,则a=b,列举出所有的情况,注意去掉不能构成三角形的结果,交换腰和底的位置,求和得到结果【详解】解:由题意知以a、b、c为三条边的长可以构成一个等腰(含等边)三角形,先考虑等边三角形情况,则a=b=c=1,2,3,4,5,6,7,8,9,此时n有9个,再考虑等腰三角形情况,若a,b是腰,则a=b,当a=b=1时,ca+b=2,则c=1,与等边三角形情况重复;当a=b=2时,c4,则c=1,3(c=2的情况等边三角形已经讨论了),此时n有2个;当a=b=3时,c6,则c=1,2,4,5,此时n有4个;当a=b=4时,c8,则c=1,2,3,5,6,7,有6个;当a=b=5时,c10,有c=1,2,3,4,6,7,8,9,有8个;由加法原理知n有2+4+6+8+8+8+8+8=52个同理,若a,c是腰时,c也有52个,b,c是腰时也有52个所以n共有9+3×52=165个故选:C【点睛】本题考查了整数问题的综合运用,解答本题的关键是根据所给的条件不重不漏的列举出所有的结果,注意数字要首先能够构成三角形,即满足两边之和大于第三边7、D【分析】根据数据总和=频数÷频率,列式计算即可得出m的值;根据的频率a满足,可求出该范围的频数,进一步得出b的值的范围,从而求解;根据中位数的定义即可求解;根据加权平均数的计算公式即可求解.【详解】解:日均可回收物回收量(千吨)为时,频数为1,频率为0.05,所以总数m=,推断合理;20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;1+2+6=9,故这m天的日均可回收物回收量的中位数在组,是合理推断;(1+5)÷2=3,0.05+0.10=0.15,这天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D【点睛】本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.8、D【分析】根据频数分布表、扇形统计图制作的步骤,可以解答本题【详解】由题意可得:正确统计步骤的顺序是:去图书馆收集学生借阅图书的记录整理借阅图书记录并绘制频数分布表绘制扇形图来表示各个种类所占的百分比从扇形图中分析出最受学生欢迎的种类故选D【点睛】本题考查了扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤9、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65°,OFxtan65°,BF3+x,tan35°,OF(3+x)tan35°,2.1x0.7(3+x),x1.5,OF1.5×2.13.15,OE3.15+1.54.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键10、B【分析】应先把最小的移动到B,较大的移动到C,然后把最小的移动到C上,把最大的移动到B,把较小的移动到A,把较大的移动到B,最后把最小的移动到B共需7次【详解】解:需分两步完成:(设最大的圆片为3,较小的为2,最小的为1)先将最小的圆片移动到B柱上:1B,2C,1C,3B,此时完成了第一步,移动了4次;将最大圆片放到B柱后,再将剩下两个,按序排列:1A,2B,1B;此时完成了第二步,移动了3次,因此一共移动了3+4=7次故选B【点睛】解决本题需注意第一步就应把最小的圆片移动到最终要到达的位置上二、填空题1、33【分析】奔着节约时间又不使每道程序互相矛盾的情况下进行分析解决问题【详解】解:根据题意,可以这样安排:先准备米饭(3分钟),然后使用电饭煲加工米饭(30分钟)在加工米饭的同时,准备汤菜(5分钟),然后使用煲汤锅加工汤(15分钟)接下来摘菜(5+5=10分钟),炒菜(6+8=14分钟),即炒菜和汤共需29分钟妈妈做好这顿饭,最少需要30+3=33分钟故答案为:33【点睛】本题属于合理安排时间问题,要抓住既节约时间又不使工序矛盾来进行分析设计2、【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得:,故答案为【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 3、4【分析】根据题意先将第一次砸碎3倍数的金蛋解出来,再将第二次砸碎3倍数的金蛋解出来,以此类推直到没有编号为60的金蛋即可解出.【详解】解:第一次砸碎3的倍数的金蛋有210÷3=70个; 还剩210-70=140个, 140÷3=462, 第二次砸碎3的倍数的金蛋有46个; 还剩140-46=94个 94÷3=311 第三次砸碎3的倍数的金蛋有31个; 还剩94-31=63个; 63÷3=21 第四次砸碎3的倍数的金蛋有21个 还剩63-21=42 砸了四次后,里面没有编号为60的金蛋, 故答案为:4【点睛】本题考查阅读理解能力,关键在于读懂题意,根据题意进行求解.4、20 13 【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值【详解】(1)由A、B两点的纵坐标相同可知:ABx轴,AB=12(8)=20;(2)过点C作lAB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1(17)=18,AE=12,设CD=x,AD=CD=x,由勾股定理可知:x2=(18x)2+122,解得:x=13,CD=13故答案为(1)20;(2)13【点睛】本题考查了勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型5、13 5050 【分析】先表示出每行的各数分别是,.,找到最后包含88的行,可得88出现了几次,再根据永远不会出现的数是处于两个相邻行之间的数,即在和之间的数,且为整数,从而计算可得【详解】解:显然各行上出现的数都由该行第一列的数决定,则可以先求出每行第一个数,记第一行第一个数依次为a1,a2,a3,.,观察可得:an=,第n行各数为,.,则第13行各数为79,80,81,.,包含88,第14行各数为92,93,94,.,不包含88,88在图中共出现了13次,永远不会出现的数是处于两个相邻行之间的数,即在和之间的数,且为整数,当n=99时,=4950,=4951,不符合,当n=100时,=5049,=5051,则存在5050,处于第100行最后一个数和第101行第一个数之间,最小的永不出现的数为5050,故答案为:13,5050【点睛】本题考查了数字型规律,难度较大,解题的关键是找到每行各数的规律,并用代数式表示出各数三、解答题1、(1)210(2)754【分析】(1)分别求出时针与分针的函数解析式,利用函数交点问题求出交点坐标即得出答案(2)利用(1)中关系,得出时针与竖轴线夹角与转动时间的关系,求出即可【详解】(1)时针:y1=60+x分针:y2=6x 60+x=6x,解得x= 所以在2:002:15之间,时针与分针重合的时刻是2:10 (2)时针:y1=135+x分针:y2=6x 135+x=6x,解得x=,所以在7:308:00之间,时针与分针重合的时刻是7:54【点睛】本题主要考查一次函数的应用,找出时针与分针转动角度与x的函数关系是解决本题的关键2、(1);(2)且a0;(3)a3【分析】(1)利用根的判别式得到不等式,解之即可;(2)利用根的判别式得到不等式,解之即可;(3)分a0和a0两种情况分别讨论即可【详解】解:(1)有实根,当a=0时,解得:x=;当a0时,解得:且a0,;(2)有两个不等实根,当a=0时,解得:x=,不符合;当a0时,解得:且a0,且a0;(3)若a0,则对称轴为直线x=,在y轴左侧,函数在(1,2)上单调递减,此时在(1,2)上没有实根;当a0时,对称轴为直线x=,在y轴右侧,若函数在(1,2)上有且只有一个实根,则且,解得:a3【点睛】本题考查了二次函数与一元二次方程的关系,二次函数的图像和性质,解题的关键是结合图像求解3、(1)75;3.6;4.5;(2);(3)当甲车到达距地70千米处时,求甲、乙两车之间的路程为180千米【分析】(1)根据图象可知两车2小时后相遇,根据路程和为270千米即可求出乙车的速度;然后根据“路程、速度、时间”的关系确定的值;(2)运用待定系数法解得即可;(3)求出甲车到达距地70千米处时行驶的时间,代入(2)的结论解答即可【详解】解:(1)乙车的速度为:千米/时,故答案为75;3.6;4.5;(2)(千米),当时,设,根据题意得:,解得,;当时,设,;(3)甲车到达距地70千米处时行驶的时间为:(小时),此时甲、乙两车之间的路程为:(千米)答:当甲车到达距地70千米处时,求甲、乙两车之间的路程为180千米【点睛】考核知识点:一次函数的应用.把实际问题转化为函数问题是关键.4、(1)56根;(2)()4种方案;()堆放41层【分析】(1)根据题意列出前层可以堆积的圆钢的总数,列出不等式解不等式可得出答案;(2)()根据题中要求的堆积方式写出堆积的总圆钢数关于层数的关系式,再根据与的奇偶性不同讨论可能的堆积方案;()根据()中求得的四种堆积方案以及题中圆钢的直径和堆积要求分别讨论符合条件的堆积方案,便可求出选择堆放41层这个方案,最能节省堆放场地【详解】解:(1)由题意可知:第一层放1根,第二层放2根,第三层放3根,第层放根,层一共放了根圆钢,由题意可知,解不等式得当时,使剩余的圆钢尽可能地少,此时剩余了56根圆钢;(2)当纵断面为等腰梯形时,设共堆放层,则从上到下每层圆钢根数是以为首项、1为公差的等差数列,从而,即,因与的奇偶性不同,所以与的奇偶性也不同,且,从而由上述等式得:或或或,所以共有4种方案可供选择 (3)因层数越多,最下层堆放得越少,占用面积也越少,所以由(2)可知:若,则,说明最上层有29根圆钢,最下层有69根圆钢,此时,两腰之长为,上下底之长为和,从而梯形之高为,而,所以符合条件;若,则,说明最上层有17根圆钢,最下层有65根圆钢,此时,两腰之长为,上下底之长为和,从而梯形之高为,显然大于,不合条件,舍去;综上所述,选择堆放41层这个方案,最能节省堆放场地【点睛】本题考查了等差数列的性质以及等差数列的实际应用,考查了同学们的计算能力,解题时注意分类讨论思想和方程思想的运用,是各地高考的热点,同学们在平常要多加练习5、宽度是:21cm,高度是:()cm.【分析】根据圆的对称性,找到其圆心,连接圆心得到等边三角形,求得等边三角形的边长,即可求解.【详解】易拉罐呈圆柱状,其底面圆的直径为7 cm,设A,B,C,D是圆心,ABC是等边三角形,D是BC的中点AB=BC=AC=14cm,ADBC,AD=BD=cm,高度是:()cm,宽度是:14+7=21cm.【点睛】本题主要考查圆的性质,连接它们的圆心,转化成等边三角形,求边长,是解题的关键.