【高频真题解析】2022年北京市门头沟区中考数学真题模拟测评-(A)卷(含答案详解).docx
-
资源ID:28190070
资源大小:1.03MB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【高频真题解析】2022年北京市门头沟区中考数学真题模拟测评-(A)卷(含答案详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年北京市门头沟区中考数学真题模拟测评 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,五边形中,CP,DP分别平分,则()A60°B72°C70°D78°2、已知关于x的不等式组的解集是3x4,则a+b的值为()A5B8C11D93、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )ABCD4、要使式子有意义,则()ABCD5、抛物线的顶点坐标是( )ABCD6、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则A1B2C4D87、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:;抛物线与轴的另一个交点的坐标为;方程有两个不相等的实数根其中正确的个数为( )· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·A个B个C个D个8、下列一元二次方程有两个相等的实数根的是( )AB C D 9、如图所示,由A到B有、三条路线,最短的路线选的理由是( )A两点确定一条直线B经过一点有无数条直线C两点之间,线段最短D一条线段等于已知线段10、下图中能体现1一定大于2的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用幂的形式表示:_2、方程x(2x1)2x1的解是 _;3、计算:_,_,_分解因式:_,_,_4、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生_人5、不等式的最大整数解是_三、解答题(5小题,每小题10分,共计50分)1、综合与实践如图1,在综合实践课上,老师让学生用两个等腰直角三角形进行图形的旋转探究在中,在中,点,分别在,边行,直角顶点重合在一起,将绕点逆时针旋转,设旋转角,其中(1)当点落在上时,如图2:请直接写出的度数为_(用含的式子表示);若,求的长;(2)如图3,连接,并延长交于点,请判断与的位置关系,并加以证明;(3)如图4,当与是两个相等钝角时,其他条件不变,即在与中,则的度数为_(用含或的式子表示)2、A、B两地相距25km,甲上午8点由A地出发骑自行车去B地,乙上午9点30分由A地出发乘汽车去B地· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)若乙的速度是甲的速度的4倍,两人同时到达B地,请问两人的速度各是多少?(2)已知甲的速度为,若乙出发半小时后还未追上甲,此时甲、乙两人的距离不到,判断乙能否在途中超过甲,请说明理由3、计算:4、在光明中学开展的读书月活动中,七一班数学兴趣小组调查了七年级部分学生平均每天读书的时间(单位:分钟),根据统计结果制成了下列不完整的频数直方图和扇形统计图请结合图中信息回答下列问题:(1)本次调查的学生人数为_(2)补全频数直方图(3)根据以上调查,兴趣小组想制作倡议书发放给七年级平均每天读书的时间低于30分钟的学生,已知七年级一共有300名学生,请估计该兴趣小组需要制作多少份倡议书并为读书的时间低于30分钟的学生同学提出一条合理建议5、如图,已知点A、C分别是B两边上的定点(1)求作:线段CD,使得DCAB,且,点D在点C的右侧;(要求:尺规作图,不写作法,但要保留作图痕迹)(2)M是BC的中点,求证:点A、M、D三点在同一直线上-参考答案-一、单选题1、C【分析】根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数【详解】解:五边形的内角和等于,、的平分线在五边形内相交于点,故选:C· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用2、C【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可【详解】解:解不等式x-a1,得:xa+1,解不等式x+5b,得:xb-5,不等式组的解集为3x4,a+1=3,b-5=4,a=2,b=9,则a+b=2+9=11,故选:C【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键3、C【分析】由数轴可得: 再逐一判断的符号即可.【详解】解:由数轴可得: 故A,B,D不符合题意,C符合题意;故选C【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.4、B【分析】根据分式有意义的条件,分母不为0,即可求得答案【详解】解:要使式子有意义,则故选B【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键5、A【分析】根据二次函数y=a(x-h)2+k的性质解答即可【详解】解:抛物线的顶点坐标是,故选A· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】本题考查了二次函数y=a(x-h)2+k(a,h,k为常数,a0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键 y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h6、B【分析】利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可【详解】解:设,点F为AB的中点,即,解得:故选B【点睛】本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键7、C【分析】根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断【详解】解:如图,开口向上,得,得,抛物线与轴交于负半轴,即,故错误;如图,抛物线与轴有两个交点,则;故正确;由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,故正确;如图所示,当时,根的个数为与图象的交点个数,有两个交点,即有两个根,故正确;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·综上所述,正确的结论有3个故选:C【点睛】主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用8、B【分析】根据一元二次方程根的判别式判断即可【详解】解:、,方程有两个不等实数根,不符合题意;、,方程有两个相等实数根,符合题意;、,方程有两个不相等实数根,不符合题意;、,方程没有实数根,不符合题意;故选:B【点睛】本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的情况与判别式的关系:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根9、C【分析】根据线段的性质进行解答即可【详解】解:最短的路线选的理由是两点之间,线段最短,故选:C【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短10、C【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、1和2是对顶角,12故此选项不符合题意;B、如图, 若两线平行,则32,则 若两线不平行,则大小关系不确定,所以1不一定大于2故此选项不符合题意;C、1是三角形的外角,所以12,故此选项符合题意;D、根据同角的余角相等,可得12,故此选项不符合题意故选:C· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.二、填空题1、【分析】根据分数指数幂的意义,利用(m、n为正整数)得出即可【详解】解:故答案是:【点睛】本题考查了分数指数幂,解决本题的关键是熟记分数指数幂的定义2、x1=,x2=1【分析】移项后提公因式,然后解答【详解】解:移项,得x(2x-1)-(2x-1)=0,提公因式,得,(2x-1)(x-1)=0,解得2x-1=0,x-1=0,x1=,x2=1故答案为:x1=,x2=1【点睛】本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法3、 【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:,分解因式:,故答案为:;【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键4、11或12【分析】根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+76(x-1)+1,且6(x-1)+35x+7,分别求出即可【详解】解:假设共有学生x人,根据题意得出:· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,解得:10x12因为x是正整数,所以符合条件的x的值是11或12,故答案为:11或12【点睛】此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键5、2【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:,合并同类项,得:,系数化成1得:,则最大整数解是:2故答案是:2【点睛】本题主要考查不等式的整数解,关键在于求解不等式.三、解答题1、(1);(2),证明见解析;(3)【分析】(1)由等腰直角三角形得,故可求出;过点M作于点,设,则,由,得是等腰直角三角形,得出,即可求出x的值,由勾股定理即可得出答案;(2)设与相交于点,由旋转得,根据SAS证明,由全等三角形的性质得,由得即,故可证;(3)设与相交于点,同(2)得,故,即可求【详解】(1),都是等腰直角三角形,;如图2,作于点,设,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·在中,;(2),证明如下:如图3,设与相交于点,由旋转可知:,即,;(3)如图4,设与相交于点,同(2)得,【点睛】本题考查等腰三角形的判定与性质,全等三角形的判定与性质,掌握相关知识点间的应用是解题的关键2、(1)甲的速度是12.5千米/时,乙的速度是50千米/时;(2)乙能在途中超过甲理由见解析【分析】(1)设甲的速度是x千米/时,乙的速度是4x千米/时,根据A、B两地相距25千米,甲骑自行车从A地出发到B地,出发1.5小时后,乙乘汽车也从A地往B地,且两人同时到达B地,可列分式方程求解;(2)根据乙出发半小时后还未追上甲,此时甲、乙两人的距离不到,列不等式组求得乙的速度范围,进步计算即可判断(1)解:设甲的速度是x千米/时,乙的速度是4x千米/时,由题意,得,解得x=12.5,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·经检验x=12.5是分式方程的解,12.5×4=50答:甲的速度是12.5千米/时,乙的速度是50千米/时;(2)解:乙能在途中超过甲理由如下:设乙的速度是y千米/时,由题意,得,解得:44<y<48,甲走完全程花时间:小时,则乙的时间为:小时,乙小时走的路程s为:×44<s<×48,即25<s<28,乙能在途中超过甲【点睛】本题考查了分式方程的应用,一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的相等和不等关系,并据此列出方程和不等式组3、【分析】原式各项化为最简二次根式,去括号合并即可得到结果【详解】解:原式【点睛】此题考查了二次根式的加减法,涉及的知识有:二次根式的化简,去括号法则,以及合并同类二次根式法则,熟练掌握法则是解本题的关键4、(1)60(2)见解析(3)30,开卷有益,要养成阅读的好习惯(答案不唯一)【分析】(1)平均每天读书的时间1030分钟的人数除以所占的百分比,即可求解;(2)用总人数乘以平均每天读书的时间3050分钟所占的百分比,即可求解;(3)用300乘以平均每天读书的时间1030分钟所占的百分比,即可求解(1)解:本次调查的学生人数为名;(2)解:平均每天读书的时间3050分钟的人数为名,补全频数直方图如下图:· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)解:份建议:开卷有益,要养成阅读的好习惯【点睛】本题主要考查了条形统计图和扇形统计图,能准确从统计图信息是解题的关键5、(1)见解析(2)见解析【分析】(1)根据题意作,则,在射线上截取,则点即为所求;(2)连接,设与交于点,证明,可得,则重合,即过点,即可证明点A、M、D三点在同一直线上(1)如图所示,点即为所求(2)如图,连接,设与交于点, 又又是的中点重合过点,即点A、M、D三点在同一直线上【点睛】本题考查了作一个角等于已知角,作线段等于已知线段,三角形全等的性质与判定,平行线的判定,掌握基本作图是解题的关键