2022年精品解析沪教版七年级数学第二学期第十四章三角形同步练习练习题(无超纲).docx
-
资源ID:28190295
资源大小:1.10MB
全文页数:36页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析沪教版七年级数学第二学期第十四章三角形同步练习练习题(无超纲).docx
沪教版七年级数学第二学期第十四章三角形同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ADBC,C30°,ADB:BDC1:2,EAB72°,以下四个说法:CDF30°;ADB50°;ABD22°;CBN108°其中正确说法的个数是()A1个B2个C3个D4个2、如图,已知为的外角,那么的度数是( )A30°B40°C50°D60°3、下列各组线段中,能构成三角形的是( )A2、4、7B4、5、9C5、8、10D1、3、64、一个三角形三个内角的度数分别是x,y,z若,则这个三角形是( )A等腰三角形B等边三角形C等腰直角三角形D不存在5、下列三个说法:有一个内角是30°,腰长是6的两个等腰三角形全等;有一个内角是120°,底边长是3的两个等腰三角形全等;有两条边长分别为5,12的两个直角三角形全等其中正确的个数有( )A3B2C1D06、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将BEF对折,点B落在直线EF上的点B处,得折痕EM,将AEF对折,点A落在直线EF上的点A处,得折痕EN,则图中与BME互余的角有()A2个B3个C4个D5个7、如图,A,DBC3DBA,DCB3DCA,则BDC的大小为( )ABCD8、如图,将OAB绕点O逆时针旋转80°得到OCD,若A的度数为110°,D的度数为40°,则AOD的度数是( )A50°B60°C40°D30°9、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D1210、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AB3,ACCD1,DBAC90°,则ACE的面积是 _2、如图,在等边ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点若AD=6,则EP+CP的最小值为_3、如图,中,点在边上,若,则的度数为_4、已知a,b,c是的三边长,满足,c为奇数,则_5、如图,在ABC中,ACB90°,点D在AB上,将ABC沿CD折叠,点A落在BC边上的点处,若B35°,则的度数为_三、解答题(10小题,每小题5分,共计50分)1、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由2、阅读下面材料:活动1利用折纸作角平分线画图:在透明纸片上画出(如图1-);折纸:让的两边QP与QR重合,得到折痕QH(如图1-);获得结论:展开纸片,QH就是的平分线(如图1-)活动2利用折纸求角如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M这时的度数可知,而且图中存在互余或者互补的角解答问题:(1)求的度数;(2)图2中,用数字所表示的角,哪些与互为余角?写出的一个补角解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , 由题意可知,是平角所以( ) °(2)图2中,用数字所表示的角,所有与互余的角是: ;的一个补角是 3、在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90°,则BCE= 度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上(线段BC之外)移动,则,之间有怎样的数量关系?请直接写出你的结论4、如图,ABC中,ABAC,D为BC边的中点,AFAD,垂足为A求证:125、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,P为上一点,当_时,与是偏等积三角形;(2)如图2,四边形是一片绿色花园,、是等腰直角三角形,与是偏等积三角形吗?请说明理由;已知的面积为如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G若小路每米造价600元,请计算修建小路的总造价6、如图,已知点E、C在线段BF上,求证:ABCDEF7、如图,在ABC中,ADBE,DAC10°,AE是BAC的外角MAC的平分线,BF平分ABC交AE于点F,求AFB的度数8、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:已知:AOB求作:AOB,使AOBAOB作图:(1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线OA,以点O为圆心,OC长为半径画弧,交OA于点C;(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D;(4)过点D画射线OB,则AOBAOB请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案写在相应的横线上)证明:由作图可知,在OCD和OCD中,OCD ,AOB'AOB(2)这种作一个角等于已知角的方法依据是 (填序号)AAS;ASA;SSS;SAS9、如图,为等边三角形,D是BC中点,CE是的外角的平分线求证:10、已知:(1)O是BAC内部的一点如图1,求证:BOCA;如图2,若OAOBOC,试探究BOC与BAC的数量关系,给出证明(2)如图3,当点O在BAC的外部,且OAOBOC,继续探究BOC与BAC的数量关系,给出证明-参考答案-一、单选题1、D【分析】根据ADBC,C30°,利用内错角相等得出FDC=C=30°,可判断正确;根据邻补角性质可求ADC=180°-FDC=180°-30°=150°,根据ADB:BDC1:2,得出方程3ADB=150°,解方程可判断正确;根据EAB72°,可求邻补角DAN=180°-EAB=180°-72°=108°,利用三角形内角和可求ABD=180°-NAD-ADB=180°-108°-50°=22°可判断正确,利用ADBC,同位角相等的CBN=DAN=108°可判断正确即可【详解】解:ADBC,C30°,FDC=C=30°,故正确;ADC=180°-FDC=180°-30°=150°,ADB:BDC1:2,BDC=2ADB,ADC=ADB+BDC=ADB+2ADB=3ADB=150°,解得ADB=50°,故正确EAB72°,DAN=180°-EAB=180°-72°=108°,ABD=180°-NAD-ADB=180°-108°-50°=22°,故正确ADBC,CBN=DAN=108°,故正确其中正确说法的个数是4个故选择D【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键2、B【分析】根据三角形的外角性质解答即可【详解】解:ACD60°,B20°,AACDB60°20°40°,故选:B【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答3、C【分析】根据三角形的三边关系定理逐项判断即可得【详解】解:三角形的三边关系定理:任意两边之和大于第三边A、,不能构成三角形,此项不符题意;B、,不能构成三角形,此项不符题意;C、,能构成三角形,此项符合题意;D、,不能构成三角形,此项不符题意;故选:C【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键4、C【分析】根据绝对值及平方的非负性可得,再由三角形内角和定理将两个式子代入求解可得,即可确定三角形的形状【详解】解:,且,解得:,三角形为等腰直角三角形,故选:C【点睛】题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键5、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可【详解】解:当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键6、C【分析】先由翻折的性质得到AEN=AEN,BEM=BEM,从而可知NEM=×180°=90°,然后根据余角的定义找出BME的余角即可【详解】解:由翻折的性质可知:AEN=AEN,BEM=BEMNEM=AEN+BEM=AEA+BEB=×180°=90°由翻折的性质可知:MBE=B=90°由直角三角形两锐角互余可知:BME的一个余角是BEMBEM=BEM,BEM也是BME的一个余角NBF+BEM=90°,NEF=BMEANE、ANE是BME的余角综上所述,BME的余角有ANE、ANE、BEM、BEM故选:C【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键7、A【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:A,DBC3DBA,DCB3DCA,设,即故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键8、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80°得到OCD, A的度数为110°,D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.9、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型10、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键二、填空题1、#【分析】先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得【详解】解:在和中,则的面积是,故答案为:【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键2、6【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】解:作点E关于AD的对称点F,连接CF,ABC是等边三角形,AD是BC边上的中垂线,点E关于AD的对应点为点F,CF就是EP+CP的最小值ABC是等边三角形,E是AC边的中点,F是AB的中点,CF=AD=6,即EP+CP的最小值为6,故答案为6【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键3、【分析】先求出EDC=35°,然后根据平行线的性质得到C=EDC=35°,再由直角三角形两锐角互余即可求解【详解】解:1=145°,EDC=35°,DEBC,C=EDC=35°,又A=90°,B=90°-C=55°,故答案为:55°【点睛】本题主要考查了平行线的性质,直角三角形两锐角互余,求出C的度数是解题的关键4、7【分析】绝对值与平方的取值均0,可知,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值【详解】解:,由三角形三边关系可得为奇数故答案为:7【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点解题的关键是确定所求边长的取值范围5、20°度【分析】先根据三角形内角和求出A,利用翻折不变性得出,再根据三角形外角的性质即可解决问题【详解】解:,B35°,是由翻折得到,故答案为:20°【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型三、解答题1、成立,证明见解析【分析】根据阅读材料将ADF旋转120°再证全等即可求得EF= BE+DF 【详解】解:成立证明:将绕点顺时针旋转,得到,、三点共线,【点睛】本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键2、(1),90;(2)1、2;CME或NEB【分析】【详解】解:(1)折叠EN是的平分线,EM是的平分线,NEA=NEA=,BEM=BEM=,是平角NEM=NEA+BEM=+,故答案为:,90;(2)1=2,AEN=3,NEM=90°,AEN+1=NEM=90°,互为余角为1和2,故答案为:1、2;AEN=3,3+NEB=180°,AEN的补角为NEBB=90°,2+EMB=90°,3=EMB,CME+EMB=180°,3+CME=180°,AEN的补角为CME, AEN的补角为CME或NEB故答案为CME或NEB【点睛】本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键3、(1)90;(2),见解析;或【分析】(1)由等腰直角三角形的性质可得ABCACB45°,由“SAS”可证BADCAE,可得ABCACE45°,可求BCE的度数;(2)由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论;分两种情况,由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论【详解】解:(1),AB=AC,AD=AE, 在和中,(2)或 理由:,即在和中, ,如图:,即在和中, ,综上所述:点D在直线BC上移动,+180°或【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键4、见详解【分析】根据等腰三角形三合一性质以及等边对等角性质得出ADBC,B=C,根据AFAD,利用在同一平面内垂直同一直线的两直线平行得出AFBC,利用平行线性质得出1=B,2=C即可【详解】证明:ABC中,ABAC,D为BC边的中点,ADBC,B=C,AFAD,AFBC,1=B,2=C,12【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键5、(1);(2)与是偏等积三角形,理由见详解;修建小路的总造价为元【分析】(1)当时,则,证,再证与不全等,即可得出结论;(2)过作于,过作于,证,得,则,再证与不全等,即可得出结论;过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,求出,即可求解【详解】解:(1)当时,与是偏等积三角形,理由如下:设点到的距离为,则,、,与不全等,与是偏等积三角形,故答案为:;(3)与是偏等积三角形,理由如下:过作于,过作于,如图3所示:则,、是等腰直角三角形,在和中,与不全等,与是偏等积三角形;如图4,过点作,交的延长线于,则,点为的中点,在和中,在和中,由得:与是偏等积三角形,修建小路的总造价为:(元【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型6、见解析【分析】由平行线的性质可证明再由,可推出最后即可利用“ASA”直接证明【详解】证明:,即在和中,【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差掌握三角形全等的判定条件是解答本题的关键7、AFB40°【分析】由题意易得ADC90°,ACB80°,然后可得,进而根据三角形外角的性质可求解【详解】解:ADBE,ADC90°,DAC10°,ACB90°DAC90°10°80°,AE是MAC的平分线,BF平分ABC,又MAEABF+AFB,MACABC+ACB,AFBMAEABF【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键8、(1)CD,OD,OCD,(2)【分析】(1)根据SSS证明DOCDOC,可得结论;(2)根据SSS证明三角形全等(1)证明:由作图可知,在DOC和DOC中,OCDOCD(SSS),AOBAOB故答案为:CD,OD,OCD,(2)解:上述证明过程中利用三角形全等的方法依据是SSS,故答案为:【点睛】本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题9、证明见解析.【分析】过D作DGAC交AB于G,由等边三角形的性质和平行线的性质得到BDGBGD60°,于是得到BDG是等边三角形,再证明AGDDCE即可得到结论.【详解】证明:过D作DGAC交AB于G,ABC是等边三角形,ABAC,BACBBAC60°,又DGAC,BDGBGD60°,BDG是等边三角形,AGD180°BGD120°,DGBD,点D为BC的中点,BDCD,DGCD,EC是ABC外角的平分线,ACE(180°ACB)60°,BCEACBACE120°AGD,ABAC,点D为BC的中点,ADBADC90°,又BDG60°,ADE60°,ADGEDC30°,在AGD和ECD中,AGDECD(ASA)ADDE【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键10、(1)见解析;BOC2A,见解析;(2)BOC2BAC,见解析【分析】(1)连接AO并延长AO至点E,根据三角形外角性质解答即可;延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可【详解】证明:(1)如图所示:连接AO并延长AO至点E,则BOEBAO,COECAO,BOCA;BOC与BAC的数量关系:BOC2A;证明:如图所示,延长AO至点E,则BOEBAO+B,COECAO+C,OAOBOC,BAOB,CAOC,BOCCOE+COEBAO+B+CAO+C2(BAO+CAO)2BAC;(2)BOC与BAC的数量关系:BOC2BAC;证明:如图所示,设Bx, OAOBOC,BBAOx,COACBAC+x;在BEO和AEC中,有:B+BOCC+CAE;即x+BOCCAE+x+CAE2BAC+x;即BOC2BAC【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答