【高频真题解析】2022年北京市门头沟区中考数学模拟真题练习-卷(Ⅱ)(含答案解析).docx
-
资源ID:28191549
资源大小:632.45KB
全文页数:28页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【高频真题解析】2022年北京市门头沟区中考数学模拟真题练习-卷(Ⅱ)(含答案解析).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年北京市门头沟区中考数学模拟真题练习 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长率为x则可列出方程( )A200(+x)=288B200(1+2x)=288C200(1+x)²288D200(1+x²)=2882、下列判断错误的是( )A若,则B若,则C若,则D若,则3、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则A1B2C4D84、如图,为直线上的一点,平分,则的度数为( )A20°B18°C60°D80°5、将,2,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )AB4CD66、下列利用等式的性质,错误的是( )A由,得到B由,得到C由,得到D由,得到· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·7、已知关于x,y的方程组和的解相同,则的值为( )A1B1C0D20218、若x1是关于x的一元二次方程x2+mx30的一个根,则m的值是()A2B1C1D29、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B那么它爬行的最短路程为()A10米B12米C15米D20米10、对于二次函数yx22x3,下列说法不正确的是( )A开口向下B当x1时,y随x的增大而减小C当x1时,y有最大值3D函数图象与x轴交于点(1,0)和(3,0)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB90°,点D是边AB的中点,连接CD,将BCD沿直线CD翻折得到ECD,连接AE若AC6,BC8,则ADE的面积为_2、计算:_;3、如图,AB,CD是的直径,弦,所对的圆心角为40°,则的度数为_4、已知点 P (m + 2, 3)和点 Q (2, n - 4)关于原点对称,则 m + n =_5、如图,ABCDEF,如果AC2,CE3,BD1.5,那么BF的长是_三、解答题(5小题,每小题10分,共计50分)1、(数学认识)数学是研究数量关系的一门学科,在初中几何学习的历程中,常常把角与角的数量关系转化为边与边的数量关系,把边与边的数量关系转化为角与角的数量关系 (构造模型)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)如图,已知ABC,在直线BC上用直尺与圆规作点D,使得ADBACB(不写作法,保留作图痕迹)(应用模型)已知ABC是O的内接三角形,O的半径为r,ABC的周长为c(2)如图,若r5,AB8,求c的取值范围(3)如图,已知线段MN,AB是O一条定长的弦,用直尺与圆规作点C,使得cMN(不写作法,保留作图痕迹)2、点C在直线AB上,点D为AC的中点,如果CBCD,AB10.5cm求线段BC的长度3、深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同张红与李萍两位同学需要通过该地铁入口乘坐地铁(1)张红选择A安全检查口通过的概率是 ;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率4、计算:(1)(2)5、在ABC中,BAC90°,P是线段AC上一动点,CQBP于点Q,D是线段BQ上一点,E是射线CQ上一点,且满足,连接AE,DE(1)如图1,当ABAC时,用等式表示线段DE与AE之间的数量关系,并证明;(2)如图2,当AC2AB6时,用等式表示线段DE与AE之间的数量关系,并证明;(3)在(2)的条件下,若,AECQ,直接写出A,D两点之间的距离-参考答案-一、单选题· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·1、C【分析】设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)²288即可【详解】解:设月增长率为x,则可列出方程200(1+x)²288故选C【点睛】本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键2、D【分析】根据等式的性质解答【详解】解:A. 若,则,故该项不符合题意; B. 若,则,故该项不符合题意;C. 若,则,故该项不符合题意; D. 若,则(),故该项符合题意;故选:D【点睛】此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立3、B【分析】利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可【详解】解:设,点F为AB的中点,即,解得:故选B【点睛】本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键4、A【分析】根据角平分线的定义得到,从而得到,再根据可得,即可求出结果【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:OC平分,故选:A【点睛】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键5、A【分析】根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算【详解】解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,2,3四个数循环出现,表示的数是与表示的两个数之积是故选A【点睛】本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键6、B【分析】根据等式的性质逐项分析即可【详解】A.由,两边都加1,得到,正确;B.由,当c0时,两边除以c,得到,故不正确;C.由,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式7、B【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求【详解】解:联立得:,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解得:,则有,解得:,故选:B【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值8、D【分析】把x=1代入方程x2+mx-3=0,得出一个关于m的方程,解方程即可【详解】解:把x=1代入方程x2+mx-3=0得:1+m-3=0,解得:m=2故选:D【点睛】本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m的方程9、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可【详解】解:如图,(1)AB;(2)AB15,由于15,则蚂蚁爬行的最短路程为15米故选:C【点睛】本题考查了平面展开-最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算10、C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】解:y=-x2+2x+3=-(x-1)2+4,a=-10,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·该函数的图象开口向下,故选项A正确;对称轴是直线x=1,当x1时,y随x的增大而减小,故选项B正确;顶点坐标为(1,4),当x=1时,y有最大值4,故选项C不正确;当y=0时,-x2+2x+3=0,解得:x1=-1,x2=3,函数图象与x轴的交点为(-1,0)和(3,0),故D正确故选:C【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答二、填空题1、6.72【分析】连接BE,延长CD交BE与点H,作CFAB,垂足为F首先证明DC垂直平分线段BE,ABE是直角三角形,利用三角形的面积求出EH,得到BE的长,在RtABE中,利用勾股定理即可解决问题【详解】解:如图,连接BE,延长CD交BE与点H,作CFAB,垂足为FACB=90°,AC=6,BC=8AB=10,D是AB的中点,AD=BD=CD=5,SABC=ACBC=ABCF,×6×8=×10×CF,解得CF=4.8将BCD沿直线CD翻折得到ECD,BC=CE,BD=DE,CHBE,BH=HEAD=DB=DE,ABE为直角三角形,AEB=90°,SECD=SACD,DCHE=ADCF,DC=AD,HE=CF=4.8BE=2EH=9.6AEB=90°,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·AE=2.8SADE=EHAE=×2.8×4.8=6.72故答案为:6.72【点睛】本题考查了翻折变换(折叠问题),直角三角形斜边上的中线的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求高,属于中考常考题型2、【分析】先分母有理化,然后合并即可【详解】解:原式=故答案为:【点睛】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和分母有理化是解决问题的关键3、70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出OCE,根据平行线的性质即可得到AOC的度数【详解】解:连接OE,如图,弧CE所对的圆心角度数为40°,COE=40°,OC=OE,OCE=OEC,OCE=(180°-40°)÷2=70°,CE/AB,AOC=OCE=70°,故答案为:70°【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,弧与圆心角的关系,平行线的性质,求出COE=40°是解题的关键4、-3【分析】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·求解的值,然后代入求解即可【详解】解:由题意知解得故答案为:【点睛】本题考查了关于原点对称的点坐标的特征解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数5、【分析】根据平行线分线段成比例定理解答即可【详解】解:ABCDEF,AC2,CE3,BD1.5,即,解得:BF,故答案为:【点睛】本题主要考查了平行线分线段成比例,熟知平行线分线段成比例定理是解题的关键三、解答题1、(1)见解析;(2)16c88;(3)见解析【分析】(1)可找到两个这样的点:当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,即为所求;两种情况均可利用等腰三角形的性质及三角形外角的性质证明;(2)考虑最极端的情况:当C与A或B重合时,则,可得此时,根据题意可得,当点C为优弧AB的中点时,连接AC并延长至D,使得,利用等腰三角形的性质及三角形外角性质可得点D的运动轨迹为一个圆,点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,根据垂径定理及勾股定理可得,当AD为直径时,c最大即可得;(3)依照(1)(2)的做法,方法一:第1步:作AB的垂直平分线交O于点P;第2步:以点P为圆心,PA为半径作P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交P于点E;第5步:连接AE交O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得;第2步:作的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交ABE的外接圆于点F;第5步:连接AF交O于点C,即为所求【详解】(1)如图所示:当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,即为所求;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·证明:,;同理可证明;(2)当C与A或B重合时,则,如图,当点C为优弧AB的中点时,连接AC并延长至D,使得,同弧所对的圆周角相等,为定角,为定角,点D的运动轨迹为一个圆,当点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,由垂径定理可得:CE垂直平分AB,在中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·AD为直径时最长,最长,的周长最长c最长为,c的取值范围为:;(3)方法一:第1步:作AB的垂直平分线交O于点P;第2步:以点P为圆心,PA为半径作P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交P于点E;第5步:连接AE交O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得;第2步:作的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交ABE的外接圆于点F;第5步:连接AF交O于点C,即为所求【点睛】题目主要考查等腰三角形的性质及三角形外角的性质,勾股定理,垂径定理,角的作法等,理解题意,综合运用各个知识点作图是解题关键2、4.5cm【分析】根据题意画出图形,由线段中点定义得到AC=2CD,进而得到,求出CD,AC,即可求出段BC的长度【详解】解:如图,点D为AC的中点,AC=2CD,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·AB10.5cm,CBCD,AC+BC=AB,解得CD=3cm,AC=6cm,BC=AB-AC=4.5cm【点睛】此题考查了线段的和差计算,正确掌握线段中点定义,依据题意作出图形辅助解决问题是解题的关键3、(1)(2)【分析】(1)根据概率公式求解即可;(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案【小题1】解:(1)有AB、C三个闸口,张红选择A安全检查口通过的概率是,故答案为:;【小题2】根据题意画图如下:共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,则她俩选择相同安全检查口通过的概率是【点睛】本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图4、(1)6(2)3x-25【分析】(1)根据负指数,零次幂,绝对值的性质,可得答案;(2)利用平方差公式计算即可(1)原式=2+1+3=6;(2)原式=【点睛】本题考查了实数的运算及整式的混合运算,掌握负指数,零次幂,绝对值的性质,平方差公式是解题关键· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·5、(1),理由见解析(2),理由见解析(3)【分析】(1)连接AD根据,可得,从而得到,再由,可得,从而得到,进而得到,即可求解;(2)连接AD先证明,可得到,从而得到,再由勾股定理,即可求解;(3)根据题意可先证明四边形ADQE是矩形,可得到ADBP,再由,可得AP=4,再由勾股定理可得,然后根据三角形的面积,即可求解(1)解:理由:如图,连接AD,即,在RtDAE中,;(2)解:,理由:如图,连接AD,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,即,在RtDAE中,;(3)解: 由(2)得:DAE=90°,AECQ,BPCQ,DQE=AEQ=90°,PQAE,四边形ADQE是矩形,ADP=90°,即ADBP,AC=6,AP=4,AC2AB6,AB=3,BAC=90°, , , 【点睛】本题主要考查了相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识,熟练掌握相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识是解题的关键