精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数定向测评练习题(名师精选).docx
-
资源ID:28192106
资源大小:492.82KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数定向测评练习题(名师精选).docx
人教版九年级数学下册第二十八章-锐角三角函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米2、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则的值是( )ABCD3、在正方形网格中,每个小正方形的边长都是1,BAC的位置如图所示,则sinBAC的值为()ABCD4、如图,在RtABC中,C90°,BC1,以下正确的是( )ABCD5、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD6、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q下列结论错误的是()AAEBFBQBQFCcosBQPDS四边形ECFGSBGE7、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是( )A2BCD8、如图,若要测量小河两岸相对的两点A,B的距离,可以在小河边取AB的垂线BP上的一点C,测得BC50米,ACB46°,则小河宽AB为多少米()A50sin46°B50cos46°C50tan46°D50tan44°9、如图,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则A的正切值是()ABC2D10、如图所示,九(二)班的同学准备在坡角为的河堤上栽树,要求相邻两棵树之间的水平距离为8 m,那么这两棵树在坡面上的距离AB为( )A8mB mC8sina mD m第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF,给出下列结论:AGD110.5;2tanAED2;SAGDSOGD;四边形AEFG是菱形;BFOF;SOGF1,则正方形ABCD的面积是128,其中正确的是_(只填写序号)2、如图,在ABC中,C90°,BD平分ABC交AC于点D,DEAB于点E,AE6,cosA(1)CD_;(2)tanDBC_3、在ABC中,(2cosA)2+|1tanB|0,则ABC一定是:_4、如图,等边的边长为2,点O是的中心,绕点O旋转,分别交线段于D,E两点,连接,给出下列四个结论:;四边形的面积始终等于;周长的最小值为3其中正确的结论是_(填序号)5、如图,已知菱形ABCD的边长为2,BAD60°,若DEAB,垂足为点E,则DE的长为_三、解答题(5小题,每小题10分,共计50分)1、在中,为锐角且(1)求的度数;(2)求的正切值2、(1)解方程: (2)解方程:(用公式法)(3)计算: (4)计算:3、4、计算:sin260°+|tan45°|2cos45°5、如图1,在中,(1)求的长;(2)如图2,点P沿线段从B点向C点以每秒的速度运动,同时点Q沿线段向A点以每秒的速度运动,且当P点停止运动时,另一点Q也随之停止运动,若P点运动时间为t秒若时,求证:;并求此时t的值点P沿线段从B点向C点运动过程中,是否存在t的值,使的面积最大;若存在,请求出t的值;若不存在,请说明理由-参考答案-一、单选题1、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90°,A65°,AO30m,tan65°,BO30tan65°米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边2、B【分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线yk1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函数y在第一象限内的图象交于点B,k21×33故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标3、D【分析】先求出ABC的面积,以及利用勾股定理求出,利用面积法求出,进而求解即可【详解】解:如图所示,过点B作BDAC于D,由题意得:,故选D【点睛】本题主要考查了勾股定理和求正弦值,解题的关键在于能够正确作出辅助线,构造直角三角形4、C【分析】根据勾股定理求出AB,三角函数的定义求相应锐角三角函数值即可判断【详解】解:在RtABC中,C90°,BC1,根据勾股定理AB=,cosA=,选项A不正确;sinA,选项B不正确;tanA,选项C正确;cosB,选项D不正确故选:C【点睛】本题主要考查锐角三角函数的定义,勾股定理,掌握锐角三角函数定义是解题的关键5、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键6、C【分析】BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,即可判断B;首先证明ABEBCF,再利用角的关系求得BGE=90°,即可得到AEBF即可判断A;利用QF=QB,解出BP,QB,根据正弦的定义即可求解即可判断C;可证BGE与BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解即可判断D【详解】解:四边形ABCD是正方形,C=90°,ABCD,由折叠的性质得:FPFC,PFBBFC,FPB=C90°,CDAB,CFBABF,ABFPFB,QFQB,故B选项不符合题意;E,F分别是正方形ABCD边BC,CD的中点,CD=BC,ABE=C=90°,CFBE,在ABE和BCF中, ,ABEBCF(SAS),BAECBF,又BAE+BEA90°,CBF+BEA90°,BGE90°,AEBF,故A选项不符合题意;令PFk(k0),则PB2k,在RtBPQ中,设QBx,x2(xk)2+4k2,x,cosBQP,故C选项符合题意;BGEBCF,GBECBF,BGEBCF,BEBC,BFBC,BE:BF1:,BGE的面积:BCF的面积1:5,S四边形ECFG4SBGE,故D选项不符合题意故选C【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解7、C【分析】根据网格的特点,勾股定理求得的长,进而根据勾股定理逆定理判定是直角三角形,进而根据正弦的定义求解即可【详解】解:是直角三角形,且是斜边故选C【点睛】本题考查了网格中勾股定理与勾股定理的逆定理的应用,正弦的定义,证明是直角三角形是解题的关键8、C【分析】根据三角函数的定义求解即可【详解】解:在中,米,故选:C,【点睛】此题考查了解直角三角形的应用,解题的关键是掌握三角函数的定义9、D【分析】首先构造以A为锐角的直角三角形,然后利用正切的定义即可求解【详解】解:连接BD,则BD,AD2,则tanA故选D【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,构造直角三角形是本题的关键10、B【分析】运用余弦函数求两树在坡面上的距离AB【详解】解:坡角为,相邻两树之间的水平距离为8米,两树在坡面上的距离(米)故选:B【点睛】此题主要考查解直角三角形中的坡度坡角问题及学生对坡度坡角的掌握及三角函数的运用能力二、填空题1、【解析】【分析】由四边形ABCD是正方形,可得GADADO45°,又由折叠的性质,可求得ADG的度数,从而求得AGD;利用GAD与ADG度数求得AED度数可得;证AEGFEG得AGFG,由FGOG即可得;由折叠的性质与平行线的性质,易得AEG是等腰三角形,由AEFE、AGFG即可得证;设OFa,先求得EFG45°,从而知BFEFGFOF;由SOGF1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论【详解】解:四边形ABCD是正方形,GADADO45°,由折叠的性质可得:ADGADO22.5°,AGD180°GADADG112.5°,故错误AED180°EADADE67.5°,tanAED1,则2tanAED2,故错误;由折叠的性质可得:AEEF,EFDEAD90°,在AEG和FEG中,AEGFEG(SAS),AGFG,在RtGOF中,AGFGGO,SAGDSOGD,故错误;AGEGADADG67.5°AED,AEAG,又AEFE、AGFG,AEEFGFAG,四边形AEFG是菱形,故正确;设OFa,四边形AEFG是菱形,且AED67.5°,FEGFGE67.5°,EFG45°,又EFO90°,GFO45°,GFEFa,EFO90°,EBF45°,BFEFGFa,即BFOF,故正确;SOGF1,OG21,即a21,则a22,BFEFa,且BFE90°,BE2a,又AEEFa,ABAEBE2aa(2)a,则正方形ABCD的面积是(2)2a2(64)×2128,故正确;故答案为:【点睛】本题考查了正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用2、 8 【解析】【分析】(1)在RtADE中,根据余弦函数的定义求出AD,利用勾股定理求出DE,再由角平分线的性质可得DC=DE=8;(2)由AD=10,DC=8,得AC=AD+DC=18由A=A,AED=ACB,可知ADEABC,由相似三角形对应边成比例可求出BC的长,根据三角函数的定义可求出tanDBC=【详解】解:(1)在RtADE中,AED=90°,AE=6,cosA=,AD=AEcosA=10,DE=102-62=8BD平分ABC,DEAB,DCBC,CD=DE=8;故答案为:8;(2)由(1)AD=10,DC=8,AC=AD+DC=18,在ADE与ABC中,A=A,AED=ACB,ADEABC,DEBC=AEAC,即8BC=618,BC=24,tanDBC=CDBC=824=13故答案为:【点睛】本题考查了解直角三角形,角平分线的性质、相似三角形的判定与性质,三角函数的定义,求出DE是解第(1)小题的关键;求出BC是解第(2)小题的关键3、等腰直角三角形【解析】【分析】根据非负数的意义和特殊锐角的三角函数值求出角A和角B,进而确定三角形的形状【详解】解:因为(2cosA)2+|1tanB|0,所以2cosA0,且1tanB0,即cosA,tanB1,所以A45°,B45°,所以 所以ABC是等腰直角三角形,故答案为:等腰直角三角形【点睛】本题考查特殊锐角三角函数值以及三角形的判定,掌握特殊锐角的三角函数值是正确判断的前提4、【解析】【分析】如图:连接OB、OC,利用等边三角形的性质得ABO=OBC=OCB=30°,再证明BOD=COE,可证BODCOE,即BD=CE、OD=OE,则可对进行判断;利用 SBOD=SCOE得到四边形ODBE的面积 =13SABC=33,则可对进行判断;再作OHDE,则DH=EH,计算出SDOE=34OE2,利用SDOE随OE的变化而变化和四边形ODBE的面积为定值可对进行判断;由于BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OEBC时,OE最小,BDE的周长最小,计算出此时OE的长则可对进行判断【详解】解:连接OB、OC,如图,等边ABC=ACB=60°,点O是ABC的中心,OB=OC,OB、OC分别平分ABC和ACB,ABO=OBC=OCB=30°BOC=120°,即BOE+COE=120°,而DOE=120°,即BOE+BOD=120°,BOD=COE,在BOD和COE中BOD=COEBO=COOBD=OCE BODCOE,BD=CE,OD=OE,所以正确;SBOD=SCOE四边形ODBE的面积 =SOBC=13SABC=13×34×22=33,故正确;如图:作OHDE,则DH=EH,DOE=120°,ODE=_OEH=30°, OH=12OE,HE =3OH=32OE, DE=3OE, SODE=1212OE3OE=34OE2,即SDOE随OE的变化而变化,而四边形ODBE的面积为定值, SODESBDE;所以错误;BD=CE,BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=2+DE=2+OE当OEBC时,OE最小,BDE的周长最小,此时 OE=33,BDE周长的最小值=2+1=3,所以止确故填【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质等知识点,灵活应用相关知识成为解答本题的关键5、【解析】【分析】由已知的,根据垂直的性质得到,即三角形ADE为直角三角形,在此直角三角形中,根据正弦函数得到,将AD的值代入,利用特殊角的三角函数值,化简即可求出DE【详解】解:,在中,则故答案为:【点睛】题目主要考查利用锐角三角函数解三角形及特殊角的三角函数值,菱形的性质等,深刻理解锐角三角函数的性质是解题关键三、解答题1、(1)60°,(2)3【解析】【分析】(1)根据特殊角三角函数值直接求解即可;(2)作ADBC于D,求出AD3,CD1,由三角函数定义即可得出答案【详解】解:(1)B为锐角且,B60°;(2)作ADBC于D,如图所示:,BDAB3,AD,BC4,BD3,CDBCBD1,tanC3【点睛】本题考查了解直角三角形、特殊锐角的三角函数值、三角函数定义等知识;熟练掌握直角三角形的性质和特殊锐角的三角函数值是解题的关键2、(1)x11,x23;(2)x1,x2;(3);(4)【解析】【分析】(1)用因式分解法解方程即可;(2)用公式法解方程即可;(3)求出特殊角三角函数值,再计算即可;(4)先计算负指数、特殊角三角函数值、0指数和绝对值,再计算即可【详解】解:(1)解方程:, ,x11,x23;(2)解方程:(用公式法),方程有两个不相等的实数根,x1,x2;(3)计算: = ,=;(4)计算:,=,=【点睛】本题考查了解一元二次方程和实数的运算,解题关键是熟记特殊角三角函数值,熟练运用不同方法解一元二次方程3、【解析】【分析】将式子中特殊角的三角函数值换掉,然后去绝对值,计算负指数幂,最后进行加减运算即可【详解】解:【点睛】题目主要考查特殊角的三角函数值的运算及绝对值、负指数幂的运算,熟记特殊角的三角函数值是解题关键4、【解析】【分析】先运用特殊角的三角函数值和绝对值的知识进行计算,然后再合并即可解答【详解】解:原式()2+|1|2×+1【点睛】本题主要考查了特殊角的三角函数值的混合运算、绝对值等知识点,牢记特殊角的三角函数值成为解答本题的关键5、(1)AB=13;(2)证明见解析,t=354;存在,t=6【解析】【分析】(1)过A点作BC的垂线,垂足为D,则可求得AD=5,再由勾股定理可得AB长度(2)由APC=APQ+QPC=BAP+ABC,可得QPC=BAP,则可证得,可求得BP以及QC的长度,根据题意列一元一次方程即可过A点作BC的垂线,垂足为D,过Q点作BC垂线,垂足为H,根据题意列方程即可【详解】(1)过A点作BC的垂线,垂足为D在RtABD中,ADBD=tanABC=512,BC=24BD=12BC=12AD=12×512=5由勾股定理有AB=BD2+AD2AB=122+52=144+25=169=13(2)APC=APQ+QPC=BAP+ABCQPC=BAP又ABC=ACBABBP=PCQC设运动了t秒,则BP=2t,PC=24-2t,AQ=13-t,QC=t则132t=24-2tt解得t=354过A点作BC的垂线,垂足为D,过Q点作BC垂线,垂足为H,设运动了t秒,则BP=2t,PC=24-2t,AQ=13-t,QC=t,ABC=ACBcosABC=cosACB在RtABD中AB=13,AD=5cosABC=cosACB=513QH=513t当2t=24时运动停止,即0t12sSPQC=12PCQHSPQC=12PC513QCSPQC=12(24-2t)513tSPQC=-513t2+6013t对称轴为t=-b2a=-60132×513=6SPQC=-513t2+6013t开口朝下,6<12,当t=6时面积最大【点睛】本题考查了解直角三角形、勾股定理、一元一次方程的几何动点问题,根据题意列一元一次方程是解题的关键