人教版九年级数学下册第二十七章-相似定向测评试题(精选).docx
-
资源ID:28193993
资源大小:554.44KB
全文页数:29页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版九年级数学下册第二十七章-相似定向测评试题(精选).docx
人教版九年级数学下册第二十七章-相似定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知点M是ABC的重心,AB18,MNAB,则MN的值是()A9BCD62、已知点P是线段AB的黄金分割点,APPB若AB2,则AP的长为()AB3C1D33、如图,在ABC中,点D,E分别是AC和BC的中点,连接AE,BD交于点F,则下列结论中正确的是( )ABCD4、如图,在RtABC中,C90°,AB10,BC8点P是边AC上一动点,过点P作PQAB交BC于点Q,D为线段PQ的中点,当BD平分ABC时,AP的长度为( )ABCD5、如果线段,那么和的比例中项是( )ABCD6、如图,ADBECF,AB3,BC2,DE3.6,则EF的值为()A1.8B2.4C4.8D5.47、如图,已知直线abc,分别交直线m、n于点A、C、E、B、D、F,AC4,CE6,BD3,则DF的长是( )AB4C6D28、如图,在矩形中,连接,以对角线为边,按逆时针方向作矩形的相似矩形,再连接,以对角线为边作矩形的相似矩形,按此规律继续下去,则矩形的周长为( )ABCD9、若两个相似三角形的面积比为,则它们的对应边的比是( )ABCD10、根据下列条件,判断ABC与ABC能相似的条件有()CC90°,A25°,B65°;C90°,AC6cm,BC4cm,AC9cm,BC6cm;AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;ABC与ABC是有一个角为80°等腰三角形A1对B2对C3对D4对第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知ABC和A'B'C是以点C为位似中心的位似图形,且ABC和A'B'C的周长之比为1:2,点C的坐标为(1,0),若点B的对应点B'的横坐标为5,则点B的横坐标为 _2、点 是 的重心, 过点 作 边的平行线与 边交于点 与 边交于点 , 则 _3、在平面直角坐标系xOy中,已知点A(1,3),B(6,3),以原点O为位似中心,在同一象限内把线段AB缩短为原来的,得到线段CD,其中点C对应点A,点D对应点B,则点D的坐标为 _4、如图,在中,D为AB边上的一点,要使成立,还需要添加一个条件,你添加的条件是_5、如图,已知1=2,若再增加一个条件就能使ABCADE,则这个条件可以是_(填一个即可)三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,C=90°,AC=4,AB=5,点D在AC上且AD=3,DEAB于点E,求AE的长2、如图,已知O是坐标原点,A,B两点的坐标分别为(2,1),(3,1),(1)以点O为位似中心,将OAB放大为原来的两倍,画出图形;(2)A点的对应点A'的坐标是 ;B点的对应点B的坐标是 ;(3)在AB上有一点P(x,y),按(1)的方式得到的对应点P的坐标是 3、如图所示,在坐标系xOy中,抛物线yx2+bx+c与x轴交于点A,B,与y轴交于点C,直线yx+8经过A,C两点(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;如图2,过点O,P的直线ykx(k0)交AC于点E,若PE:OE5:6,求k的值4、(1)基本模型:如图1,与交于点,且,求证:;(2)模型应用:如图2,在中,点为边上一点,连接,点为线段上一点,连接,若,求的值(3)综合应用:在(2)的条件下,若,平分,求的长 5、如图,在正方形网格中,每一个小正方形的边长都为1,ABC的顶点分别为A(2,3),B(2,1),C(5,4)(1)只用直尺在图中找出ABC的外心P,并写出P点的坐标_(2)以(1)中的外心P为位似中心,按位似比2:1在位似中心的左侧将ABC放大为ABC,放大后点A、B、C的对应点分别为A、B、C,请在图中画出ABC;(3)若以A为圆心,为半径的A与线段BC有公共点, 则的取值范围是_-参考答案-一、单选题1、D【解析】【分析】根据重心的概念得到,证明CMNCDB,根据相似三角形的性质列式计算,得到答案【详解】点M是ABC的重心,AB18,AD=DB=AB=9,MN/AB,CMNCDB,即解得:MN=6,故选:D【点睛】本题考查的是三角形的重心的概念和性质、相似三角形的判定和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键2、C【解析】【分析】根据黄金分割点的定义,知是较长线段;则,代入数据即可得出的长度【详解】解:由于为线段的黄金分割点,且是较长线段;则故选:C【点睛】本题考查了黄金分割点的概念,解题的关键是熟记黄金比的值进行计算3、D【解析】【分析】根据三角形的中位线的性质和相似三角形的判定和性质定理即可得到结论【详解】解:点D,E分别是AC和BC的中点,DEBC,DEFBFA,故A选项错误;故B选项错误;DEFBAF,故C选项错误; D为AC的中点,AD=CD ,故D选项正确;故选:D【点睛】本题考查了三角形的中位线的性质,相似三角形的判定和性质,正确的识别图形是解题的关键4、B【解析】【分析】根据勾股定理求出AC,根据平行线的性质、角平分线的定义得到QDBQ,证明CPQCAB,根据相似三角形的性质计算即可【详解】解:设BQx,在RtABC中,C90°,AB10,BC8,由勾股定理得,BD平分ABC,QBDABD,PQAB,QDBABD,QBDQDB,可设QDBQx,则CQ=8-x,D为线段PQ的中点,QP2QD2x,PQAB,CPQCAB,即解得:,APCACP,故选B【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的性质与判定,相似三角形的性质与判定,勾股定理,熟练掌握相似三角形的性质与判定条件是解题的关键5、D【解析】【分析】由比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,即可求解【详解】解:设它们的比例中项是xcm,根据题意得:x2=2×18,解得:(线段是正数,负值舍去)故选:D【点睛】本题主要考查了比例的基本性质,熟练掌握比例中项的平方等于两条线段的乘积是解题的关键6、B【解析】【分析】根据平行线分线段成比例定理即可得出答案【详解】,故选:【点睛】本题考查了平行线分线段成比例定理,掌握定理的内容是解题的关键7、A【解析】【分析】由直线,根据平行线分线段成比例定理,即可得,又由,即可求得的长即可【详解】解:,解得:,故选择A【点睛】此题考查了平行线分线段成比例定理题目比较简单,解题的关键是注意数形结合思想的应用8、C【解析】【分析】根据已知和矩形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律即可求得第n个矩形的周长【详解】四边形ABCD是矩形,ADDC,按逆时针方向作矩形ABCD的相似矩形AB1C1C,矩形AB1C1C的边长和矩形ABCD的边长的比为矩形AB1C1C的周长和矩形ABCD的周长的比,矩形ABCD的周长=(2+1)×2=6,矩形AB1C1C的周长=,依此类推,矩形AB2C2C1的周长和矩形AB1C1C的周长的比矩形AB2C2C1的周长=矩形AB3C3C2的周长=按此规律矩形的周长为:故选:C【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律9、D【解析】【分析】根据相似三角形面积之比等于相似比的平方,求面积之比的算术平方根即可【详解】相似多边形的面积比等于相似比的平方,面积比为,对应边的比为,故选:【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形面积之比等于相似比的平方是解题的关键10、C【解析】【分析】根据相似三角形常用的判定方法对各个选项进行分析从而得到答案【详解】解:(1)CC90°,A25°B65°CC,BB(2)C90°,AC6cm,BC4cm, ,AC9,BC6,(3)AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;(4)没有指明80°的角是顶角还是底角无法判定两三角形相似共有3对故选:C【点睛】此题主要考查相似三角形的判定方法:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似二、填空题1、-4【解析】【分析】过点B作BDx轴于点D,过点B作BHx于点H,则BDBH,可得BCDBCH,从而,再由相似三角形的周长之比等于相似比,可得,继而得到,即可求解【详解】解:如图,过点B作BDx轴于点D,过点B作BHx于点H,则BDBH,DBC=HBC,BDC=BHC,BCDBCH,ABC和ABC的周长之比为12,点C的坐标为(1,0),点B的对应点B的横坐标为5,OC1,OH5,CH6,3,ODOC+CD=1+3=4,点B的横坐标为4故答案为:【点睛】本题主要考查了位似图形,相似三角形的判定和性质,熟练掌握位似图形,相似三角形的判定和性质定理是解题的关键2、【解析】【分析】先根据重心到顶点的距离等于到对边中点的距离的2倍得到,在根据EFBC找到与EF、BC有关的比例即可【详解】如图所示,设AG交BC于D点G是ABC的重心,AG=2GD,DEBC,故答案为:【点睛】本题考查了三角形的重心,平行线分线段成比例熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键3、【解析】【分析】由位似图形的性质可得:这一组对应点的坐标之比为3,从而把的横坐标与纵坐标都乘以 即可得到答案.【详解】解:以原点O为位似中心,相似比为,把线段AB缩短为CD,AB,CD在同一象限,点B的坐标为(-6,3), 点D的坐标为即 故答案为:【点睛】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k4、或【解析】【分析】根据图形可以看出两个三角形有一个公共角,相似证明中,有两个角对应相等即可证明两三角形相似,即添加对应角相等即可【详解】解:由图可知,在中,添加的条件为:或故答案为:或【点睛】本题主要考查三角形相似的判定,掌握判定相似的条件是解题的关键5、B=D 或C=AED或 =(答其中一个即可)【解析】【分析】要使ABCADE,在这两三角形中,由1=2可知BAC=DAE,还需的条件可以是B=D或C=AED或 =【详解】解:这个条件为:B=D1=2,BAC=DAEB=D,ABCADE(或C=AED或 =也可)【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解答本题的关键三、解答题1、【解析】【分析】先证明,由相似三角形的性质即可求出AE【详解】DEAB于点E,C=90°,AEDC,AA,ADEABC,AE【点睛】本题考查相似三角形的判定与性质,掌握相似三角形的判定定理以及性质是解题的关键2、(1)图见解析;(2)或,或;(3)或【解析】【分析】(1)分放大后的图形在左侧,放大后的图形在右侧两种情况,先分别将点的横纵坐标乘以2或得到点,再顺次连接点即可得;(2)结合(1)的两种情况,根据位似图形的性质即可得;(3)结合(1)的两种情况,根据位似图形的性质即可得【详解】解:(1)当放大后的图形在左侧时,画图如下:当放大后的图形在右侧时,画图如下:(2),或,即或,故答案为:或,或;(3),或,故答案为:或【点睛】本题考查了画位似图形、点坐标与位似图形,正确分两种情况讨论是解题关键3、(1);(2);或k= - 10【解析】【分析】(1)由直线的解析式yx4易求点A和点C的坐标,把A和C的坐标分别代入yx2+bx+c求出b和c的值即可得到抛物线的解析式;(2)若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQAO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;过P点作PFOC交AC于点F,因为PFOC,所以PEFOEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点F(x,x8),利用(x2+bx+c)(x8),可求出x的值,解方程求出x的值可得点P的坐标,代入直线ykx即可求出k的值【详解】解:(1)直线yx8经过A,C两点,A点坐标是(8,0),点C坐标是(0,8),又抛物线过A,C两点,解得:,;(2)如图1,由(1)知,抛物线解析式是,抛物线的对称轴是直线x以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,PQAO,PQAO8P,Q都在抛物线上,P,Q关于直线x对称,P点的横坐标是,当x时,y,P点的坐标是(,);如图2,过P点作PFOC交AC于点F,PFOC,PEFOEC,又PE:OE5:6,OC8,PF,点F在AC上,设点F(x,x8),(x2-5x+8)(x8),化简得:(x4)2解得:x1,x2P点坐标是(,8)或(,)又点P在直线ykx上,把(,8)或(,)分别代入ykx中,k或k10【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,平行四边形的判定和性质,相似三角形的判定和性质,解一元二次方程,题目综合性较强,难度不大,是一道很好的中考题4、(1)见解析;(2);(3)53【解析】【分析】(1)由ABCD,可得A=D,B=C,即可证明AOBDOC;(2)如图所示,过点C作CFAB交AD延长线于F,先证明ABDFCD得到ABFC=BDCD,由BAD=CED,得到F=CED,则CE=CF,即可推出ABCE=BDCD=12;(3)如图所示,延长CE交AB于G,过点C作CHAF于H,由三线合一定理可得CGAB,AB=2AG,然后证明ECF=90°,设AG=AE=x,则AB=2x,CF=CE=4x,则CG=CE+GE=5x,先求出EF=CE2+CF2=42x,从而得到CH=EH=FH=12EF=22x,在直角ACG中AC2=AG2+CG2,则13=x2+25x2,求出x=22,然后求出DH=CD2-CH2=43,AE=AG2+GE2=1,即可得到AD=AE+DE=53【详解】解:(1)ABCD,A=D,B=C,AOBDOC;(2)如图所示,过点C作CFAB交AD延长线于F,CFAB,BAD=F,B=FCD,ABDFCD,ABFC=BDCD,又BAD=CED,F=CED,CE=CF,ABCE=BDCD=12;(3)如图所示,延长CE交AB于G,过点C作CHAF于H,AC=BC,CE平分ACB,CGAB,AB=2AG,BAD=45°,AEG=45°,F=CED=45°,ECF=90°,设AG=AE=x,则AB=2x,CF=CE=4x,CG=CE+GE=5x,CHEF,CH=EH=FH=12EF,EF=CE2+CF2=42x,CH=EH=FH=12EF=22x,在直角ACG中AC2=AG2+CG2,13=x2+25x2,x=22,EH=CH=2,BDCD=12,CD=23BC=23AC=2133,DH=CD2-CH2=43,ED=EH-DH=23,又AE=AG2+GE2=1,AD=AE+DE=53【点睛】本题主要考查了等腰三角形的性质与判定,相似三角形的性质与判定,勾股定理等等,解题的关键在于能够正确作出辅助线进行求解5、(1)(4,2);(2)见解析;(3)【解析】【分析】(1)根据三角形的外接圆的圆心是三边垂直平分线的交点即可找到点P;(2)根据位似中心与三角形三个顶点的连线将原三角形扩大2倍即可;(3)根据直线和圆的位置关系:当半径大于或等于点A到BC的距离时,A与线段BC有一个或两个公共点即可【详解】解:如图所示:(1)点P即为ABC的外心,P点的坐标为(4,2),故答案为:(4,2);(2)图中画出的ABC即为所求作的图形;(3)观察图形可知:r=时,A与线段BC有一个公共点此时A与线段BC相切,当时,A只经过点,的取值范围是故答案为:【点睛】本题考查了作图位似变换、三角形的外接圆与圆心、直线与圆的位置关系,解决本题的关键是根据位似中心画位似图形