人教版九年级数学下册第二十七章-相似综合训练试题(含答案解析).docx
-
资源ID:28194034
资源大小:557.84KB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版九年级数学下册第二十七章-相似综合训练试题(含答案解析).docx
人教版九年级数学下册第二十七章-相似综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,A90°点D在AB边上,点E在AC边上,满足CDE45°,AEDB若DE1,BC7,则( )A2B4C5D62、如图,小明到操场测量旗杆AB的高度,他手拿一支铅笔MN,边观察边移动(铅笔MN始终与地面垂直)当小明移动到D点时,眼睛C与铅笔,旗杆的顶端M,A共线,同时眼睛C与它们的底端N,B也恰好共线此时测得DB50m,小明的眼睛C到铅笔的距离为0.6m,铅笔MN的长为0.16m,则旗杆AB的高度为( )A15mBmCmD14m3、下列四个命题中正确的是( )A菱形都相似;B等腰三角形都相似;C两边及其中一边上的中线对应成比例的两三角形相似;D两边对应成比例,且有一个角对应相等的两三角形相似4、如果线段,那么和的比例中项是( )ABCD5、下列图形中,ABC与DEF不一定相似的是( )ABCD6、如图,线段两个端点的坐标分别为,以原点为位似中心,在第一象限内将线段缩小为原来的后得到线段,则端点的坐标为( )ABCD7、如果两个相似多边形的周长比是2:3,那么它们的面积比为()A2:3B4:9C:D16:818、如图,在ABC中,点D在边AB上,若ACDB,AD3,BD4,则AC的长为( )A2BC5D29、如图,已知ABCDEF,BD:DF2:5,则的值为()ABCD10、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC相似的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知B是线段AC的黄金分割点,ABBC,若AC6,则AB的长为_(结果保留根号)2、已知,则的值为 _3、如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为 _4、已知线段AB=30cm,C为线段AB的黄金分割点(ACBC),则AC=_5、已知在平行四边形中,点在直线上,连接交于点,则的值是_三、解答题(5小题,每小题10分,共计50分)1、如图,ABC的顶点都在网格点上,点M的坐标为(0,1)(1)以点M为位似中心,把ABC按3:1放大,在第二象限得到A1B1C1,画出A1B1C1;(2)若ABC的周长为m,面积为n,则上述所画的A1B1C1的周长为 ,面积为 2、如图,已知直线l经过点A(1,0),与双曲线y=(x0)交于点B(2,1)过点P(p,p-1)(p1)作x轴的平行线分别交双曲线y=(x0)和y=-(x0)于点M、N(1)求m的值和直线l的解析式;(2)若点P在直线y=2上,求证:PMBPNA;(3)是否存在实数p,使得SAMN=4SAMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由3、如图,内接于O,且为O的直径,交于点,在的延长线上取点,使得DCEB(1)求证:是O的切线;(2)若,求AE的长4、如图所示,在RtABC中,B90°,AB6cm,BC8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,PBQ的面积等于8cm2?(2)经过几秒后,两个三角形相似5、在三角形ABC中,ACAB,CAB,点D是平面内不与B,C重合的任意一点,连接CD,将线段绕点逆时针旋转得到线段CE,连接AD,BE,DE(1)如图1,当60°时, ,并求出直线BE与直线AD所夹的劣角是多少度?(2)如图2,当90°时,若点P,Q分别是AC,AB的中点,点D在直线PQ上,求点A,D,E在同一直线上时的值-参考答案-一、单选题1、A【解析】【分析】根据ADEACB,得到AC=7AD,AB=7AE,过点E作EFDC,垂足为F,由CDE45°,DE1,CFECAD,得到EF,DF,FC,DC的长,计算面积即可【详解】如图,过点E作EFDC,垂足为F,AEDB,AA,ADEACB,AD:AC= AE:AB= DE:BC=1:7,AC=7AD,AB=7AE,CDE45°,DE1,EF=DF=,EFCDAC,ECFDCA,CFECAD,EF:DA= CF:CA, EF:CF= DA:CA =1:7, CF=,CD=,=2,故选【点睛】本题考查了三角形的相似与性质,勾股定理,熟练掌握三角形相似的判定是解题的关键2、C【解析】【分析】利用相似三角形对应边的比等于对应高的比,过作于,交于,先证四边形是矩形,再明,得出,从而求出【详解】解:过作于,交于,根据题意 ,四边形是矩形,又,CMN=A,CNM=CBA,故选择C【点睛】本题考查相似三角形的应用,矩形的判定与性质,三角形相似判定与性质,掌握相似三角形的应用于测量的方法,矩形的判定与性质,三角形相似判定与性质是解题关键3、C【解析】【分析】根据三角形相似和相似多边形的判定解答【详解】解:A、菱形对应边成比例,但对应角不一定相等,所以所有的菱形不一定都相似,本选项说法错误;B、等腰三角形,各内角的值不确定,故无法证明三角形相似,故本选项错误;C、两边及其中一边上的中线对应成比例的两三角形相似,故本选项正确;D、两边对应成比例,必须夹角相等才能判定三角形相似,故本选项错误故选:C【点睛】本题考查了命题与定理的知识,掌握相似多边形的判定定理是解题的关键4、D【解析】【分析】由比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,即可求解【详解】解:设它们的比例中项是xcm,根据题意得:x2=2×18,解得:(线段是正数,负值舍去)故选:D【点睛】本题主要考查了比例的基本性质,熟练掌握比例中项的平方等于两条线段的乘积是解题的关键5、A【解析】【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90°,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90°,所以根据ACB=CDB=90°,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理6、A【解析】【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标【详解】解:线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,端点C的横坐标和纵坐标都变为A点的一半,端点C的坐标为:(3,3)故选:A【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键7、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案【详解】解:两个相似多边形的周长比是2:3,这两个相似多边形的相似比是2:3,它们的面积比是4:9,故选B【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键8、B【解析】【分析】求出AB,通过AA证ACDABC,推出,代入求出即可【详解】解:AD3,BD4,AB7,AA,ACDB,ACDABC,AC2AD×AB21,AC,故选:B【点睛】本题考查了相似三角形的性质和判定的应用,关键是推出ACDABC并进一步得出比例式9、D【解析】【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=2:5,然后利用比例性质即可得出答案【详解】解:,AC:CE=BD:DF,BD:DF2:5,AC:CE= BD:DF2:5,即CE=AC,AE=AC,AC:AE=2:7=故选:D【点睛】本题考查平行线分线段成比例即三条平行线截两条直线,所得的对应线段成比例,解题的关键是找出成比例线段进行求解10、B【解析】【分析】根据正方形的性质求出,根据相似三角形的判定定理判断即可【详解】解:由正方形的性质可知,、图形中的钝角都不等于,由勾股定理得,对应的图形中的边长分别为1和,图中的三角形(阴影部分)与相似,故选:B【点睛】本题考查的是相似三角形的判定,解题的关键是掌握两组对应边的比相等且夹角对应相等的两个三角形相似二、填空题1、#【解析】【分析】根据黄金分割的定义得到,把AC6代入计算即可解题【详解】解:B是线段AC的黄金分割点, AC62、#【解析】【分析】先用含x的代数式表示y,然后代入比例式进行计算即可得解【详解】解:y=3x,=故答案为:【点睛】本题考查了比例的性质,解题的关键是用含x的代数式表示y3、5【解析】【分析】因为DGEF2,所以G在以D为圆心,2为半径圆上运动,取DI1,可证GDICDG,从而得出GICG,然后根据三角形三边关系,得出BI是其最小值【详解】解:如图,在RtDEF中,G是EF的中点,DG,点G在以D为圆心,2为半径的圆上运动,在CD上截取DI1,连接GI,GDICDG,GDICDG,IG,BG+BG+IGBI,当B、G、I共线时,BG+CG最小BI,在RtBCI中,CI3,BC4,BI5,故答案是:5【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点的运动轨迹是解题的关键4、cm【解析】【分析】由黄金分割点的含义知,则可求得AC的长度【详解】由题意,故答案为:cm【点睛】本题考查了黄金分割点,所谓黄金分割点,是指线段AB上的一个点C,若BC:AC=AC:AB,则称点C是线段AB的黄金分割点,则可得;掌握黄金分割点的含义是关键5、或【解析】【分析】分两种情况:当点E在线段AD上时,由四边形ABCD是平行四边形,可证得EFDCFB,求出DE:BC2:3,即可求得EF:FC的值;当点E在射线DA上时,同得:EFDCFB,求出DE:BC4:3,即可求得EF:FC的值【详解】解:,分两种情况:当点E在线段AD上时,如图1所示四边形ABCD是平行四边形,ADBC,ADBC,EFDCFB,EF:FCDE:BC,DE2AEADBC,DE:BC2:3,EF:FC2:3;当点E在线段DA的延长线上时,如图2所示:同得:EFDCFB,EF:FCDE:BC,DE4AEADBC,DE:BC4:3,EF:FC4:3;综上所述:EF:FC的值是或;故答案为:或【点睛】此题考查了相似三角形的判定与性质与平行四边形的性质此题难度不大,证明三角形相似是解决问题的关键;注意分情况讨论三、解答题1、(1)图见详解;(2)3m,9n【解析】【分析】(1)利用位似变换的性质分别作出,的对应点,即可(2)根据相似三角形的性质及位似可直接进行求解【详解】解:(1)如图,即为所求(2)ABC按3:1放大,在第二象限得到A1B1C1,ABCA1B1C1,ABC的周长为m,面积为n,A1B1C1的周长为3m,面积为9n;故答案为3m,9n【点睛】本题主要考查位似及相似三角形的性质,熟练掌握位似及相似三角形的性质是解题的关键2、(1)m=2,y=x-1;(2)见解析;(3)存在实数p=1+132或1+52使得SAMN=4SAMP【解析】【分析】(1)将点B的坐标代入即可得出m的值,设直线l的解析式为y=kx+b,再把点A、B的坐标代入,解方程组求得k和b即可得出直线l的解析式;(2)根据点P在直线y=2上,求出点P的坐标,再证明PMBPNA即可;(3)先假设存在,利用SAMN=4SAMP求得p的值,看是否符合要求【详解】(1)解:B(2,1)在双曲线y=(x0)上,m=2,设直线l的解析式为y=kx+b,则k+b=02k+b=1,解得k=1b=-1,直线l的解析式为y=x-1;(2)证明:点P(p,p-1)(p1),点P在直线y=2上,p-1=2,解得p=3,P(3,2),PNx轴,点M在双曲线y=上,点N在双曲线y=-2x上,M(1,2),N(-1,2),PM=2,PN=4,PA=3-12+2-02=2,PB=3-22+2-12=,BPM=APN,PM:PN=PB:PA=1:2,PMBPNA;(3)解:存在实数p,使得SAMN=4SAMPP(p,p-1)(p1),点M、N的纵坐标都为p-1,将y=p-1代入y=和y=-, 得x=2p-1和x=-2p-1,M、N的坐标分别为(2p-1,p-1),(-2p-1,p-1),当1p2时,MN=4p-1,PM=2p-1-p,SAMN=MN×(p-1)=2,SAMP=MP×(p-1)=-p2+p+1,SAMN=4SAMP,2=4×(-p2+p+1),整理,得p2-p-1=0,解得:p=1±52,1p2,p=1+52,当p2时,MN=4p-1,PM=p-2p-1,SAMN=MN×(p-1)=2,SAMP=MP×(p-1)=p2-p-1,SAMN=4SAMP,2=4×(p2-p-1),整理,得p2-p-3=0,解得p=1±132,p大于2,p=1+132,存在实数p=1+132或1+52使得SAMN=4SAMP【点睛】本题考查的是反比例函数的综合题,以及用待定系数法求反比例函数和一次函数的解析式,相似三角形的判定3、(1)证明见详解;(2)【解析】【分析】(1)连接OC,由等腰三角形的性质得出DCE=DEC,A=ACO,可得出DCE+ACO=90°,则可得出结论(2)过点D作DFCE于点F,由勾股定理求出AB=5,证明AOEACB,得出比例线段,即可求出AE【详解】(1)证明:连接OC,如图1,DC=DE,DCE=DEC,DEC=AEO,DCE=AEO,OAOE,A+AEO=90°,DCE+A=90°,OA=OC,A=ACO,DCE+ACO=90°,OCDC,CD是O的切线;(2)如图2,过点D作DFCE于点F,AB为O的直径,ACB=90°,ACB=AOE,AC=2,AB=,又A=A,AOEACB,【点睛】本题考查了等腰三角形的性质和判定,相似三角形的判定与性质,三角形内角和定理,切线的判定,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键4、(1)2秒或4秒;(2)或1811秒【解析】【分析】(1)设经过x秒后,PBQ的面积等于8cm2,根据三角形面积公式列一元二次方程,解方程,问题得解;(2)设经过y秒后,BPQ与BAC相似,根据B=B,分BPQBAC和BPQBCA两种情况讨论,根据比例式列出方程,解方程,问题得解【详解】解:(1)设经过x秒后,PBQ的面积等于8cm2,由题意得12×2x×6-x=8,解得x1=2,x2=4,答:经过2秒或4秒后,PBQ的面积等于8cm2(2)设经过y秒后,BPQ与BAC相似,B=B,当BPBA=BQBC时,BPQBAC,即6-y6=2y8,解得y= ;当BPBC=BQBA时,BPQBCA,即6-y8=2y6,解得y= 1811;答:进过或1811秒后,两个三角形相似【点睛】本题考查了一元二次方程的应用,相似三角形形的判定,根据题意列出方程是解题关键,注意两个三角形相似没有指明对应边,故要分类讨论5、(1)1;60°(2)6+22或6-22【解析】【分析】(1)证明ADCBEC即可求得ADBE=1,延长BD,CE交于点,设ABD=,根据三角形内角和即可求得F即直线BE与直线AD所夹的劣角;(2)当点在线段上时,根据P,Q分别为AC,AB的中点,可得PQ是的中位线,进而可得DPC=APQ=45°=CDA,DCA=PCD,证明CPDCDA,设CE=a,则CD=x,设AC=2b,则AP=PC=b,代入比例式求得a=2b,进而证明CAEDAP,设AE=x,AE=3-1b,进而即可求得的值,当在线段上时,同理可得CE=2b,AD=3-1b,进而即可求得的值【详解】解:(1)在三角形ABC中,ACAB,CAB60°ABC是等边三角形AB=AC,将线段绕点逆时针旋转60°得到线段CE,DAE=60°,AD=AE是等边三角形AD=AE,EAD=60°BAD=BAC-DAC=DAE-DAC=CAEBAD=CAEADCBECAD=BE,ABD=ACEADBE=1如图,延长BD,CE交于点ABD=ACE,设ABD=则FBC=ABC-ABD=60°-,FCB=ACB+ACE=60+在FBC中,F=180°-FBC-FCB=60°即直线BE与直线AD所夹的劣角是60°(2)当点在线段上时,如图,ABC,是等腰直角三角形,CDA=45°,ACB=45°P,Q分别为AC,AB的中点,PQBCAPQ=ACB=45°DPC=APQ=45°=CDA,DCA=PCDCPDCDA设CE=a,则CD=a,DE=2a,设AC=2b,则AP=PC=bCPDC=CDAC即ba=a2ba,b>0a=2bDE=2a=2bCED=45°CEA=180°-CED=135°CPD=45°DPA=180°-CPD=135°CEA=DPA又CAE=DACCAEDAP则AEAP=ACDA设AE=x,xb=2b2b+x解得x1=3-1b,x2=-3+1b(舍)AE=3-1bCEAD=2b2b+3-1b=6-22,如图,当在线段上时,同理可得CE=2b,AD=3-1bCEAD=2b3-1b=6+22综上所述的值为6-22或6+22【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,设参数法求解是解题的关键