真题解析:2022年最新中考数学三年高频真题汇总卷(含详解).docx
-
资源ID:28194109
资源大小:834.94KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
真题解析:2022年最新中考数学三年高频真题汇总卷(含详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年最新中考数学三年高频真题汇总卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )ABCD2、已知线段AB、CD,ABCD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是()A点B在线段CD上(C、D之间)B点B与点D重合C点B在线段CD的延长线上D点B在线段DC的延长线上3、菱形ABCD的周长是8cm,ABC60°,那么这个菱形的对角线BD的长是()AcmB2cmC1cmD2cm4、若,则的值是( )AB0C1D20225、如图所示,BEAC于点D,且ADCD,BDED,若ABC54°,则E( )A25°B27°C30°D45°6、下列各组图形中一定是相似形的是( )A两个等腰梯形B两个矩形C两个直角三角形D两个等边三角形7、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )ABCD8、0.1234567891011是一个无理数,其小数部分是由1开始依次写下递增的正整数得到的,则该无理数小数点右边的第2022位数字是( )A0B1C2D39、若实数m使关于x的不等式组有解且至多有3个整数解,且使关于y的分式方程1的解满足3y4,则满足条件的所有整数m的和为()A17B20C22D2510、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,按此规律,第7个图形中圆圈的个数为· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·( )A21B25C28D29第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,中,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是_2、2.25的倒数是_3、一名男生推铅球,铅球行进的高度y(单位:米)与水平距离x(单位:米)之间的关系为,则这名男生这次推铅球的成绩是_米4、多项式2a2babc的次数是_5、如图,已知D是等边边AB上的一点,现将折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上如果,则的值为_三、解答题(5小题,每小题10分,共计50分)1、对任意一个三位数(,a,b,c为整数),如果其个位上的数字与百位上的数字之和等于十位数上的数字,则称M为“万象数”,现将“万象数”M的个位作为十位,十位作为百位,百位作为个位,得到一个数N,并规定,我们称新数为M的“格致数”例如154是一个“万象数”,将其个位作为十位,十位作为百位,百位作为个位,得到一个,所以154的“格致数”为387(1)填空:当时,_;当时,_;(2)求证:对任意的“万象数”M,其“格致数”都能被9整除;(3)已知某“万象数”M的“格致数”为,既是72的倍数又是完全平方数,求出所有满足条件的“万象数”M(完全平方数:如,我们称0、1、4、9、16叫完全平方数)2、某中学九年级学生共进行了五次体育模拟测试,已知甲、乙两位同学五次模拟测试成绩的均分相同,小明根据甲同学的五次测试成绩绘制了尚不完整的统计表,并给出了乙同学五次测试成绩的方差的计算过程甲同学五次体育模拟测试成绩统计表:次数第一次第二次第三次第四次第五次成绩(分)252927a30小明将乙同学五次模拟测试成绩直接代入方差公式,计算过程如下:· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(分2)根据上述信息,完成下列问题:(1)a的值是_;(2)根据甲、乙两位同学这五次模拟测试成绩,你认为谁的体育成绩更好?并说明理由;(3)如果甲再测试1次,第六次模拟测试成绩为28分,与前5次相比,甲6次模拟测试成绩的方差将_(填“变大”“变小”或“不变”)3、如图,在中,动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动过点P作交AC或BC于点Q,分别过点P、Q作AC、AB的平行线交于点M设与重叠部分的面积为S,点P运动的时间为秒(1)当点Q在AC上时,CQ的长为_(用含t的代数式表示)(2)当点M落在BC上时,求t的值(3)当与的重合部分为三角形时,求S与t之间的函数关系式(4)点N为PM中点,直接写出点N到的两个顶点的距离相等时t的值4、芳芳家有一种伸缩挂衣架(如图1),伸缩挂衣架中有3个菱形组成,每个菱形边长为10cm伸缩挂衣架打开时,每个菱形的锐角度数为60°(如图2);伸缩挂衣架收拢时,每个菱形的锐角度数从60°缩小为10°(如图3)问:伸缩挂衣架从打开到收拢共缩短了多少cm?(结果精确到1cm,参考数据:,)5、如图,在RtABC中,cm点D从A出发沿AC以1cm/s的速度向点C移动;同时,点F从B出发沿BC以2cm/s的速度向点C移动,移动过程中始终保持(点E在AB上)当其中一点到达终点时,另一点也同时停止移动设移动时间为t(s)(其中)(1)当t为何值时,四边形DEFC的面积为18?(2)是否存在某个时刻t,使得,若存在,求出t的值,若不存在,请说明理由(3)点E是否可能在以DF为直径的圆上?若能,求出此时t的值,若不能,请说明理由-参考答案-一、单选题1、D【分析】旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解【详解】解:旋转阴影部分,如图,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·该点取自阴影部分的概率是故选:D【点睛】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率计算方法是长度比,面积比,体积比等2、A【分析】根据叠合法比较大小的方法始点重合,看终点可得点B在线段CD上,可判断A,点B与点D重合,可得线段AB=CD,可判断B,利用ABCD,点B在线段CD的延长线上,可判断C, 点B在线段DC的延长线上,没有将AB移动到CD的位置,无法比较大小可判断D【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选项A正确,点B与点D重合,则有AB=CD与ABCD不符合,故选项B不正确;点B在线段CD的延长线上,则有ABCD,与ABCD不符合,故选项C不正确;点B在线段DC的延长线上,没有将AB移动到CD的位置,故选项D不正确故选:A【点睛】本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键3、B【分析】由菱形的性质得ABBC2(cm),OAOC,OBOD,ACBD,再证ABC是等边三角形,得ACAB2(cm),则OA1(cm),然后由勾股定理求出OB(cm),即可求解【详解】解:菱形ABCD的周长为8cm,ABBC2(cm),OAOC,OBOD,ACBD,ABC60°,ABC是等边三角形,ACAB2cm,OA1(cm),在RtAOB中,由勾股定理得:OB(cm),BD2OB2(cm),故选:B【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·勾股定理,等边三角形的性质和判定方法4、C【分析】先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可【详解】解:,a-2=0,b+1=0,a=2,b=-1,=,故选C【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键5、B【分析】根据BEAC,ADCD,得到AB=BC,ABC,证明ABDCED,求出EABE=27°【详解】解:BEAC,ADCD,BE是AC的垂直平分线,AB=BC,ABC27°,ADCD,BDED,ADB=CDE,ABDCED,EABE=27°,故选:B【点睛】此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键6、D【分析】根据相似形的形状相同、大小不同的特点,再结合等腰梯形、矩形,直角三角形、等边三角形的性质与特点逐项排查即可【详解】解:A、两个等腰梯形的形状不一定相同,则不一定相似,故本选项错误;B、两个矩形的形状不一定相同,则不一定相似,故本选项错误;C、两个直角三角形的形状不一定相同,则不一定相似,故本选项错误;D、两个等边三角形的大小不一定相同,但形状一定相同,则一定相似,故本选项正确故选D【点睛】本题主要考查了相似图形的定义,理解相似形的形状相同、大小不同的特点成为解答本题的关键7、B【分析】根据等量关系:原价×(1x)2=现价列方程即可【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:根据题意,得:,故答案为:B【点睛】本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键8、A【分析】一位数字9个,两位数字90个,三位数字900个,由此算出2022处于三位数字的第几个数字求得答案即可【详解】共有9个1位数,90个2位数,900个3位数,2022-9-90×2=1833,1833÷3=611,此611是继99后的第611个数,此数是710,第三位是0,故从左往右数第2022位上的数字为0,故选:A【点睛】此题主要考查了规律型:数字的变化类,根据已知得出变化规律是解题关键9、B【分析】根据不等式组求出m的范围,然后再根据分式方程求出m的范围,从而确定的m的可能值【详解】解:由不等式组可知:x5且x,有解且至多有3个整数解,25,2m8,由分式方程可知:y=m-3,将y=m-3代入y-20,m5,-3y4,-3m-34,m是整数,0m7,综上,2m7,所有满足条件的整数m有:3、4、6、7,共4个,和为:3+4+6+7=20故选:B【点睛】本题考查了学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m的范围,本题属于中等题型10、D【分析】根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:第1个图形中圆圈数量5=1+4×1,第2个图形中圆圈数量9=1+4×2,第3个图形中圆圈数量13=1+4×3,第n个图形中圆圈数量为1+4×n=4n+1,当n=7时,圆圈的数量为29,故选:D【点睛】本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题二、填空题1、【分析】如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案【详解】解:如图,过点作轴于点,点作轴于点,设,则,在中,在中,解得,由旋转的性质得:,在和中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,故答案为:【点睛】本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键2、【分析】2.25的倒数为,计算求解即可【详解】解:由题意知,2.25的倒数为故答案为:【点睛】本题考查了倒数解题的关键在于理解倒数的定义3、10【分析】将代入解析式求的值即可【详解】解:解得:(舍去),故答案为:10【点睛】本题考查了二次函数的应用解题的关键在于正确的解一元二次方程所求值要满足实际4、3【分析】利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,据此求解即可【详解】解:多项式2a2b-abc的次数是3故答案为:3【点睛】本题主要考查了多项式,正确把握多项式的项数和次数确定方法是解题关键5、7:8【分析】设AD=2x,DB=3x,连接DE、DF,由折叠的性质及等边三角形的性质可得ADEBFD,由相似三角形的性质即可求得CE:CF的值【详解】设AD=2x,DB=3x,则AB=5x· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·连接DE、DF,如图所示ABC是等边三角形BC=AC=AB=5x,A=B=ACB=60° 由折叠的性质得:DE=CE,DF=CF,EDF=ACB=60°ADE+BDF=180°EDF=120°BDF+DFB=180°B=120°ADE=DFBADEBFD即CE:CF=7:8故答案为:7:8【点睛】本题考查了等边三角形的性质,折叠的性质,相似三角形的判定与性质等知识,证明三角形相似是本题的关键三、解答题1、(1)(2)证明见解析(3)或.【分析】(1)根据新定义分别求解即可;(2)设“万象数”为 则其为 则再计算其“格致数”,再利用乘法的分配律进行变形即可证明结论;(3)由是的倍数,可得是的倍数,结合的范围可得 从而得到或或或或 再求解方程符合条件的解,可得的值,结合是完全平方数,从而可得答案.(1)解:由新定义可得: 当时, 故答案为:(2)解:设“万象数”为 则其为 则而 所以其“格致数” · · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · · 所以其“格致数”都能被9整除.(3)解:是的倍数,是的倍数,是的倍数, ,a,b,c为整数, 或或或或 或或或或或 而,的值为:或或或或或 是完全平方数,的值为:或.【点睛】本题考查的是新定义运算的理解与运用,同时考查了二元一次方程的非负整数解问题,理解新定义,逐步分析与运算是解本题的关键.2、(1)29(2)乙的体育成绩更好,理由见解析(3)变小【分析】(1)根据平均分相同,根据乙的方差公式可得乙的平均分为28,则甲的平均分也为28,进而求得的值;(2)根据甲的成绩计算甲的方差,比较甲乙的方差,方差小的体育成绩更好;(3)根据第六次的成绩等于平均数,根据方差公式可知方差将变小(1)解:甲、乙两位同学五次模拟测试成绩的均分相同,乙的方差为:则平均分为28所以甲的平均分为28则解得故答案为:29(2)乙的成绩更好,理由如下,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·乙的成绩较稳定,则乙的体育成绩更好(3)甲6次模拟测试成绩的方差将变小故答案为:变小【点睛】本题考查了求方差,平均数,根据方差判断稳定性,掌握求方差的公式是解题的关键3、(1);(2);(3)当,;当时,(4),【分析】(1)根据C=90°,AB=5,AC=4,得cosA=,即,又因为AP=4t,AQ=5t,即可得答案;(2)由AQPM,APQM,可得,证CQMCAB,可得答案;(3)当时,根据勾股定理和三角形面积可得;当,PQM与ABC的重合部分不为三角形;当时,由S=SPQB-SBPH计算得;(4)分3中情况考虑,当N到A、C距离相等时,过N作NEAC于E,过P作PFAC于F,在RtAPF中,cosA = ,解得t = ,当N到A、B距离相等时,过N作NGAB于G,同理解得t = ,当N到B、C距离相等时,可证明AP=BP=AB=,可得答案【详解】(1)如下图:C=90°,AB=5,AC=4,cosA=PQAB,cosA=动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动,点P运动的时间为t(t>0)秒,AP=4t,AQ=5t,CQ=AC-AQ=4-5t,故答案为:4-5t;(2)AQPM,APQM,四边形AQMP是平行四边形· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·当点M落在BC上时,APQM,CQMCAB,当点M落在BC上时,;(3)当时,此时PQM与ABC的重合部分为三角形,由(1)(2)知:,PQ=,PQM=QPA=90°,当Q与C重合时,CQ=0,即4-5t=0,当,PQM与ABC的重合部分不为三角形,当时,如下图:,PB=5-4t,PMAC,即,S=SPQB-SBPH,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · · 综上所述:当,;当时,(4)当N到A、C距离相等时,过N作NEAC于E,过P作PFAC于F,如图:N到A、C距离相等,NEAC,NE是AC垂直平分线,AE=AC= 2,N是PM中点,PN=PM=AQ= AF=AE- EF=2- 在RtAPF中,cosA = 解得t = 当N到A、B距离相等时,过N作NGAB于G,如图:AG=AB=PG=AG-AP=-4tcosNPG=cosA= 而PN=PM=AQ=t 解得t = 当N到B、C距离相等时,连接CP,如图:PMAC,ACBCPMBC,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·N到B、C距离相等,N在BC的垂直平分线上,即PM是BC的垂直平分线,PB= PC,PCB=PBC,90°-PCB= 90°-PBC,即PCA=PAC,PC= PA,AP=BP=AB=,t= 综上所述,t的值为或或【点睛】本题考查三角形综合应用,涉及平行四边形、三角形面积、垂直平分线等知识,解题的关键是分类画出图形,熟练应用锐角三角函数列方程4、伸缩衣架从打开到收拢共缩短了25cm【分析】连接AC、BD,交于点O,然后根据菱形的性质及三角函数可求得BD的长,同理可求的长,进而问题可求解【详解】解:连接AC、BD,交于点O,如图所示:四边形ABCD是菱形,BO=OD,打开时:,连接,交于点,如图所示:同理可得,收拢时:缩短了:答:伸缩衣架从打开到收拢共缩短了25cm【点睛】本题主要考查菱形的性质及解直角三角形,熟练掌握菱形的性质及解直角三角形是解题的关键5、(1)(2)不存在,说明见解析(3)能,【分析】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)由题意知,四边形为梯形,则,求t的值,由得出结果即可;(2)假设存在某个时刻t,则有,解得t的值,若,则存在;否则不存在;(3)假设点E在以DF为直径的圆上,则四边形DEFC为矩形,故有,求t的值,若,则存在;否则不存在(1)解:是等腰直角三角形,是等腰直角三角形,四边形为直角梯形解得或且(2)解:假设存在某个时刻t,使得化简得解得或不存在某个时刻t,使得(3)解:假设点E在以DF为直径的圆上,则四边形DEFC为矩形,即解得当时,点E在以DF为直径的圆上【点睛】本题考查了解一元二次方程,勾股定理,直径所对的圆周角为90°,矩形的性质,等腰三角形等知识点解题的关键在于正确的表示线段的长度