精品解析2021-2022学年人教版初中数学七年级下册-第六章实数综合练习试卷(无超纲).docx
-
资源ID:28194807
资源大小:269.23KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2021-2022学年人教版初中数学七年级下册-第六章实数综合练习试卷(无超纲).docx
初中数学七年级下册 第六章实数综合练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列各数中,是无理数的是 ( )AB-2C0D2、下列运算正确的是( )ABCD3、下列各数中,是无理数的是()ABCD3.14154、在下列四个实数中,最大的数是()A0B2C2D5、下列四个命题中,真命题是( )A内错角相等的逆命题是真命题B同旁内角相等,两直线平行C无理数都是无限小数D如果两条直线都与第三条直线垂直,那么这两条直线互相平行6、下列说法正确的是( )A是的平方根B是的算术平方根C2是-4的算术平方根D的平方根是它本身7、估计的值在( )A5到6之间B6到7之间C7到8之间D8到9之间8、在下列各数,3.1415926,0,0.2020020002(每两个2之间依次多1个0)中无理数的个数有( )A1个B2个C3个D4个9、数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是( )ABCD10、下列说法正确的是()A是分数B0.1919919991(每相邻两个1之间9的个数逐次加1)是有理数C3x2y+4x1是三次三项式,常数项是1D单项式的次数是2,系数为二、填空题(5小题,每小题4分,共计20分)1、如图,A,B,C在数轴上对应的点分别为a,1,其中a1,且ABBC,则|a|_2、已知,则|x3|x1|_3、的平方根是_,_4、已知a29,则a_5、若规定“”的运算法则为:,例如:则 =_三、解答题(5小题,每小题10分,共计50分)1、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天哪一种方法得到的钱数多?请说明理由(1年按365天计算)2、求下列各式中x的值(1)(x3)34(2)9(x2)2163、我们知道a+b0时,a3+b30也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数(1)试举一个例子来判断上述结论是否成立;(2)若与互为相反数,求6的值4、已知实数a、b互为相反数,c、d互为倒数,x的绝对值为,求代数式(abcd)x+-的值5、对于任意四个有理数,可以组成两个有理数对与我们规定:例如:根据上述规定解决下列问题:(1)有理数对;(2)若有理数对,则;(3)当满足等式的是整数时,求整数的值-参考答案-一、单选题1、D【分析】根据无限不循环小数叫无理数,即可选择【详解】解:A:,是有理数,不符合题意;B:-2是整数,属于有理数,不符合题意;C:0是整数,属于有理数,不符合题意;D:是无限不循环小数,属于无理数,符合题意故选:D【点睛】本题考查了无理数,掌握无理数是无限不循环小数,有理数是有限小数或无限循环小数是解答本题的关键2、B【分析】根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合题意;C、,计算错误,不符合题意;D、,计算错误,不符合题意;故选B【点睛】本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键3、A【分析】根据有理数和无理数的概念进行判断即可选出正确答案【详解】解:A、是无理数,故本选项符合题意;B、,是整数,属于有理数,故本选项不合题意;C、是分数,属于有理数,故本选项不合题意;D、3.1415是有限小数,属于有理数,故本选项不合题意;故选:A【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每两个8之间依次多1个0)等形式4、C【分析】先根据正数大于0,0大于负数,排除,然后再用平方法比较2与即可【详解】解:正数,负数,排除,最大的数是2,故选:【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键5、C【分析】由逆命题、平行线判定定理、无理数定义、平行线公理,分别进行判断,即可得到答案【详解】解:A、内错角相等的逆命题是:两个相等的角是内错角,是假命题;故A错误;B、同旁内角互补,两直线平行;故B错误;C、无理数都是无限小数,故C正确;D、在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;故D错误;故选:C【点睛】本题主要考查命题的真假判断,平行公理、平行线的判定、无理数的定义等知识,判断命题的真假关键是要熟悉课本中的性质定理6、A【分析】根据平方根的定义及算术平方根的定义解答【详解】解:A、是的平方根,故该项符合题意;B、4是的算术平方根,故该项不符合题意;C、2是4的算术平方根,故该项不符合题意;D、1的平方根是,故该项不符合题意;故选:A【点睛】此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键7、C【分析】将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可【详解】,故选:C【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围8、B【分析】根据无理数的概念确定无理数即可解答【详解】解:有理数有,3.1415926,0;无理数有,0.2020020002(相邻两个2之间依次多一个0)共2个故选B【点睛】本题主要考查了无理数的定义,无理数主要有以下三种带根号且开不尽方才是无理数,无限不循环小数为无理数,的倍数9、C【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由ABAC利用两点间的距离公式便可解答【详解】解:数轴上表示1,的对应点分别为A,B,AB1,点B关于点A的对称点为C,ACAB点C的坐标为:1(1)2故选:C【点睛】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数知道两点间的距离,求较小的数,就用较大的数减去两点间的距离10、D【分析】根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可【详解】解:A、是无限不循环小数,不是分数,故此选项不符合题意;B、0.1919919991(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;C、3x2y+4x1是三次三项式,常数项是-1,故此选项不符合题意;D、单项式的次数是2,系数为,故此选项符合题意;故选D【点睛】本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数二、填空题1、【解析】【分析】先根据数轴上点的位置求出,即可得到,由此求解即可【详解】解:A,B,C在数轴上对应的点分别为a,1, ,故答案为:【点睛】本题主要考查了实数与数轴,解题的关键在于能够根据题意求出2、2【解析】【分析】得出x-30,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果【详解】解:,12,23,x-30,x-1>0,|x3|x-1|=3-x+(x-1)=3-x+x-1=2故答案为:2【点睛】本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键3、 ±2 -8【解析】【分析】根据平方根的定义:如果对于一个数a和非负数b,有,那么a就叫做b的平方根;立方根的定义:对于c、d两个数,如果,那么c就叫做d的立方根,进行求解即可【详解】解:,4的平方根为±2,的平方根为±2,故答案为:±2;-8【点睛】本题主要考查了算术平方根,平方根和立方根,熟知相关定义是解题的关键4、【解析】【分析】根据平方根的性质:x =a,得x=± ,即可解答【详解】解:,a=±3,故答案为【点睛】此题考查平方根,解题关键在于掌握运算法则5、-2【解析】【分析】依据定义的运算法则列式计算即可【详解】=-2故答案为:-2【点睛】本题考查了新定义下的实数运算,理解新定义的运算法则并列式是解题的关键三、解答题1、第二种,理由见解析【解析】【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n1元钱即可得总数,然后比较大小即可知哪种方案得到的多【详解】解:第一种方法:1×10×365=3650元第二种方法:1+2+22+23+24+219=2201=1048575分=10485.75元10485.753650第二种方法得到的钱多【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在2、(1)x=5;(2)x=-或x=【解析】【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根,进而求出x的值【详解】解:(1) (x3)34,(x-3)3=8,x-3=2,x=5;(2)9(x+2)2=16,(x+2)2=,x+2=,x=-或x=【点睛】本题考查了立方根和平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根3、(1)成立,理由见详解;(2)0【解析】【分析】(1)用一对互为相反数的数来验证即可,(2)根据(1)的结论,然后互为相反数的两个数相加等于0,求出的值,再计算即可【详解】解:(1),而且,有,结论成立;即“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的(2)由(1)验证的结果知,若与互为相反数,则和也互为相反数,即:,【点睛】本题主要考查了立方根的定义和性质的应用,熟悉相关性质,能根据题中的信息:“若两个数的立方根互为相反数,则这两个数也互为相反数”来解答是解题的关键4、6或-8【解析】【分析】根据题意可得ab0,cd1,x±7;代入计算即可【详解】解:实数a、b互为相反数,c、d互为倒数,x的绝对值为,ab0,cd1,x±7; 原式x01x1,当x7时,原式6;当x7时,原式8, 所求代数式的值为6或-8【点睛】本题考查了代数式求值,相反数的意义,倒数的定义,绝对值的意义,根据题意得出ab0,cd1,x±7是解本题的关键5、(1)5;(2)1;(3),【解析】【分析】(1)结合题目的规定解答即可;(2)结合题目的规定列出方程,解方程即可;(3)结合题目的规定列出方程,化简为,由x为整数,可得可取和,即可求出k的值【详解】解:(1)根据题意得:原式;故答案为:;(2)根据题意化简得:,移项合并得:,解得:;故答案为:1;(3)等式的是整数,x是整数,或,【点睛】本题考查了解一元一次方程和新定义的题型,解题的关键是读懂题目给的计算方法并灵活运用