人教版九年级数学下册第二十七章-相似同步测评试卷(含答案详细解析).docx
-
资源ID:28194856
资源大小:541.54KB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版九年级数学下册第二十七章-相似同步测评试卷(含答案详细解析).docx
人教版九年级数学下册第二十七章-相似同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若两个相似三角形的面积比为,则它们的对应边的比是( )ABCD2、如图的两个四边形相似,则a的度数是( )A120°B87°C75°D60°3、如图1,物理课上学习过利用小孔成像说明光的直线传播现将图1抽象为图2,其中线段AB为蜡烛的火焰,线段AB为其倒立的像如果蜡烛火焰AB的高度为2cm,倒立的像AB的高度为5cm,线段OA的长为4cm,那么线段OA的长为()A4cmB5cmC8cmD10cm4、若,则的值为( )ABCD5、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中相似的是( )ABCD6、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA26+26B2626C13+13D13137、下列图形一定是相似图形的是()A两个矩形B两个等腰三角形C两个直角三角形D两个正方形8、如图,在RtABC中,C90°,AB10,BC8点P是边AC上一动点,过点P作PQAB交BC于点Q,D为线段PQ的中点,当BD平分ABC时,AP的长度为( )ABCD9、如图,已知ABCDEF,BD:DF2:5,则的值为()ABCD10、如图,在平面直角坐标系中,将以原点O为位似中心放大后得到,若,则与的面积的比是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,12,请添加一个条件_,使ADEACB2、如图,在RtABC中,C90°正方形EFCD的三个顶点E,F,D分别在边AB,BC,AC上已知AC15,BC5,则正方形的边长为_ 3、将2020个边长为1的正方形按如图所示的方式排列,点A,A1,A2,A3A2020和点M,M1,M2M2019是正方形的顶点,连接AM1,AM2,AM3AM2019分别交正方形的边A1M,A2M1,A3M2A2019M2018于点N1,N2,N3N2019,四边形M1N1A1A2的面积是S1,四边形M2N2A2A3的面积是S2,则S2019为 _4、如图,数学兴趣小组下午测得一根长为1m的竹竿影长是0.8m,同一时刻测量树高时发现树的影子有一部分落在教学楼的墙壁上,测得留在墙壁上的影高为1.2m,地面上的影长为2.6m,请你帮算一下,树高是_m5、如图,在平面直角坐标系中,点在第一象限内,点在轴正半轴上,是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,则点的坐标为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形ABCD中,M为BC上一点,ME交CD于F,交AD的延长线于点E(1)求证:;(2)若,求的面积2、如图1,在四边形ABCD中,AC为四边形对角线,在ACD的CD边上取一点P,连接AP,如果APC是等腰三角形,且ABC与APD相似,则我们称APC是该四边形CD边上的“等腰邻相似三角形”(1)如图2,在平行四边形ABCD中,B45°,若APC是CD边上的“等腰邻相似三角形”,且APPC,BACDAP,则PCA的度数为 ;(2)如图3,在四边形ABCD中,若BCAD3CAD,BAC2CAD,请在图3中画出一个AD边上的“等腰邻相似三角形APC”,并说明理由;(3)已知RtAPC,若RtAPC是某个四边形ABCD的“等腰邻相似三角形”,且APPC1,ABC与APC相似,求出对角线BD长度的所有可能值3、如图,已知AB是O的直径,锐角DAB的平分线AC交O于点C,作CDAD,垂足为D,直线CD与AB的延长线交于点E(1)求证:直线CD为O的切线;(2)当AB2BE,且CE时,求AD的长4、【问题提出】已知有两个RtABC和RtA'BC',其中CC90°,A60°,A45°(1)如图1,作线段CD,CD,分别交AB于点D,交A'B于点D,使得BCD45°,B'CD'30°,问BCD与B'CD',ACD与ACD是否相似?并选择其中相似的一对三角形,说明理由(2)如图2,作线段AD,B'D,分别交BC于点D,交A'C'于点D,若ACD与BCD、ABD与AB'D'均相似,求CAD,C'B'D的度数【拓展思考】已知任意两个不相似的直角三角形,能否分别作一条直线对其进行分割,使其中一个三角形所分割得到的两个三角形与另一个三角形所分割得到的两个三角形分别对应相似?如果可以,请直接画出一种分割示意图;如果不能,请说明理由5、如图,在平面直角坐标系中,的顶点坐标分别为,(1)请以原点为位似中心,画出,使它与的相似比为,变换后点、的对应点分别为点、,点在第一象限,并写出点坐标_;(2)若为线段上的任一点,则变换后点的对应点的坐标为_-参考答案-一、单选题1、D【解析】【分析】根据相似三角形面积之比等于相似比的平方,求面积之比的算术平方根即可【详解】相似多边形的面积比等于相似比的平方,面积比为,对应边的比为,故选:【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形面积之比等于相似比的平方是解题的关键2、B【解析】【分析】根据相似多边形的性质,可得 ,再根据四边形的内角和等于360°,即可求解【详解】解:如图,两个四边形相似, ,两个四边形相似,且四边形的内角和等于360°, 故选:B【点睛】本题主要考查了相似多边形的性质,多边形的内角和,熟练掌握相似多边形的对应边成比例,对应角相等是解题的关键3、D【解析】【分析】由AB/ AB,可得AOBAOB进而根据相似三角形的性质列出比例代入数据求解即可【详解】AB/ AB,AOBAOB, ,即 ,cm,故选D【点睛】本题考查了相似三角形的判定与性质,掌握相似三角形的性质与判定是解决本题的关键4、A【解析】【分析】设,可得,再代入求值即可【详解】解: , 设, ,故选:A【点睛】本题考查的是比例的基本性质,求代数式的值,掌握设参数法解决比例问题是解题的关键5、B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解【详解】解:由题意得: 、A选项中的三角形三边长分别为,1,与ABC的三边对应边不成比例关系,不符合题意;B选项中的三角形三边长分别为,1,对应边成比例,符合题意;C选项中的三角形三边长分别为,3,与ABC的三边对应边不成比例关系,不符合题意;D选项中的三角形三边长分别为,2,与ABC的三边对应边不成比例关系,不符合题意;故选B【点晴】此题主要考查相似三角形的判定和勾股定理,解题的关键是熟知相似三角形的判定定理6、D【解析】【分析】根据一种数学课本的宽与长之比为黄金比,即可得到宽:长,由此求解即可【详解】解:一种数学课本的宽与长之比为黄金比,宽:长,长是26cm,宽,故选D【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例7、D【解析】【分析】根据相似图形的定义,结合选项,用排除法求解【详解】解:A、两个矩形,对应角相等,对应边不一定成比例,故不符合题意;B、两个等腰三角形顶角不一定相等,故不符合题意C、两个直角三角形,只有一个直角相同,锐角不一定相等,故不符合题意;D、两个正方形,符合角分别对应相等,边分别对应成比例,符合相似性定义,故符合题意;故选:D【点睛】本题考查的是相似图形的概念,掌握“角分别对应相等,边分别对应成比例的两个多边形相似”是解本题的关键.8、B【解析】【分析】根据勾股定理求出AC,根据平行线的性质、角平分线的定义得到QDBQ,证明CPQCAB,根据相似三角形的性质计算即可【详解】解:设BQx,在RtABC中,C90°,AB10,BC8,由勾股定理得,BD平分ABC,QBDABD,PQAB,QDBABD,QBDQDB,可设QDBQx,则CQ=8-x,D为线段PQ的中点,QP2QD2x,PQAB,CPQCAB,即解得:,APCACP,故选B【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的性质与判定,相似三角形的性质与判定,勾股定理,熟练掌握相似三角形的性质与判定条件是解题的关键9、D【解析】【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=2:5,然后利用比例性质即可得出答案【详解】解:,AC:CE=BD:DF,BD:DF2:5,AC:CE= BD:DF2:5,即CE=AC,AE=AC,AC:AE=2:7=故选:D【点睛】本题考查平行线分线段成比例即三条平行线截两条直线,所得的对应线段成比例,解题的关键是找出成比例线段进行求解10、D【解析】【分析】根据图形可知位似比为,根据相似比等于位似比,面积比等于相似比的平方,即可求得答案【详解】解:,则与的位似比为,与的相似比为则与的面积比为故选D【点睛】本题考查了位似图形的性质,求得位似比是解题的关键二、填空题1、D=C(答案不唯一)【解析】【分析】先根据12求出BACDAE,再根据相似三角形的判定方法解答【详解】解:12,1BAE2BAE,即DAECAB,ADEACB所以,添加的条件为D=C故答案为:D=C(答案不唯一)【点睛】本题考查了相似三角形的判定,先求出两三角形的一对相等的角DAECAB是确定其他条件的关键2、#【解析】【分析】根据正方形的性质和相似三角形的判定方法可知,可得到关于正方形边长的比例式,代入数值计算即可【详解】解:,四边形是正方形,AED=B,ADE=C=90°,若设正方形的边长为,ED=CD=x,又AC15,BC5,AD=AC-CD=15-x,解得:,则正方形的边长为故答案为【点睛】本题考查了正方形的性质、相似三角形的判定和性质,解一元一次方程,解题的关键是注意图形中的相等线段的替换3、【解析】【分析】设左边第一个正方形左上角的顶点为O,先判定M1MN1M1OA,利用相似三角形的性质求出MN1的长,进而得出S1,同理得出S2,按照规律得出Sn,最后n取2019,计算即可得出答案【详解】解:如图所示,设左边第一个正方形左上角的顶点为O将2019个边长为1的正方形按如图所示的方式排列OAMA1M1A2M2A3M2018A2019M1MN1M1OAMN1=,四边形M1N1A1A2的面积是S1=;同理可得:四边形M2N2A2A3的面积S2=;四边形MnNnAnAn+1的面积Sn=S2019=;故答案为:【点睛】本题考查了相似三角形的判定与性质在规律型问题中的应用,数形结合并善于发现规律是解题的关键4、4.45【解析】【分析】在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高【详解】解:如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得,则,解得:BD0.96,树在地面的实际影子长是0.962.63.56(m),再竹竿的高与其影子的比值和树高与其影子的比值相同得:,解得:x4.45,树高是4.45m故答案为:4.45【点睛】此题主要考查了相似三角形的应用,解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同5、【解析】【分析】根据位似变换的性质计算即可【详解】解:是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,点的坐标为,即点的坐标为,故答案为:【点睛】本题考查位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,则位似图形对应点的坐标的比等于k或-k三、解答题1、(1)见解析;(2)9【解析】【分析】(1)根据正方形的性质可得,根据同角的余角相等可得,进而即可证明;(2)根据(1)的结论求得,进而求得,根据,证明,进而即可求得,根据三角形的面积公式即可求得的面积【详解】(1)证明:四边形是正方形(2)解:四边形是正方形, 【点睛】本题考查了正方形的性质,相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键2、(1)45°;(2)图见解析,证明见解析;(3)或【解析】【分析】(1)根据平行四边形的性质、“等腰邻相似三角形”的定义构建方程即可解决问题;(2)在线段AD上取一点P,使得PCPA,则PAC即为所求;(3)分四种情形分别求解即可解决问题;【详解】解:(1)如图2中,四边形ABCD是平行四边形,ABCD,DB45°BACDCA,APPC,PCAPAC,BACDAP,DAPCAPPCA,在ADC中,D+DCA+DAC180°,3PCA135°PCA45°故答案为45°(2)如图3中,在线段AD上取一点P,使得PCPA,则PAC是等腰三角形,PACPCA,DPCPAC+PPCA2PAC,BAC2CAD,BACDPC,BCAD,CBADCP,PAC是一个AD边上的“等腰邻相似三角形APC”,(3)由题意APC是等腰直角三角形,APC与ABC,ABC与PCD相似,PDC,ABC都是等腰直角三角形;如图4中,当点P在线段AD上,ABC90°时,易证DAB90°,ABAPPD1,BD如图5中,当点P在线段AD上,BAC90°时,作BEDA交DA的延长线于E易知DE3,EB1,BD当ACB90°时,四边形ABCD不存在,不符合题意;如图6中,如图7中,BD的长度与图4,图5类似综上所述,满足条件的BD的长度为或【点睛】本题考查了相似三角形的判定和性质、等腰直角三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题3、(1)见解析;(2)32【解析】【分析】(1)根据角平分线的意义以及等腰三角形等边对等角证明ADCO,即可得出结论;(2)由已知得OE2OC,在RtEOC中,设COx,即OE2x,由勾股定理得:CEx,由此能求出AD【详解】解:(1)如图,连接OC,AC平分DAB,DACCAB,OAOC,OCACAB,OCADAC,ADCO,CDAD,OCCD,OC是O直径且C在半径外端,CD为O的切线;(2)解:直径AB2BE,OE2OC,在RtEOC中,设COx,即OE2x,由勾股定理得:CEx,又CE,x1,即OC1,OCAD,EOCEAD,OCAD=OEAE,即1AD=23,解得AD32【点睛】本题考查了切线的判定,平行线的判定与性质,勾股定理,相似三角形的判定与性质,熟练掌握基础知识是解本题的关键4、(1)相似,见详解;(2)CAD=CBD=15°;【拓展思考】可以,理由见详解.【解析】【分析】(1)由题意可知如图1中,BCD与BCD、ACD与ACD相似,理由同上;(2)由题意可知如图2中,当CAD=CBD=15°时,ACD与BCD、ABD与ABD均相似;【拓展思考】根据题意运用材料的方法结合相似三角形的判定进行分析即可.【详解】解:(1)如图1中,BCD与BCD、ACD与ACD相似,理由如下A=ACD=60°,ACD=A=45°,ACDCAD,B=BCD,BCD=B,BCDCBD(2)如图2中,当CAD=CBD=15°时,ACD与BCD、ABD与ABD均相似理由:C=C=90°,CAD=CBD=15°,ACDBCD,B=ABD=30°,DAB=A=45°,BADBAD拓展思考:可以,如下图,设,作交AB于D,作交 AB于D则ACDCAD,BCDCBD理由:A=ACD=,ACD=A=,ACDCAD,BCDCBD【点睛】本题考查相似三角形的判定和性质、直角三角形的性质,解题的关键是灵活运用相似三角形的判定方法,学会取特殊角解决问题5、a-2b+3c=6-18+36=【点睛】本题考查了比例关系,解方程及求代数式的值,由比例关系设a=2k,则b=3k,c=4k是关键24(1)图见解析,;(2)【解析】【分析】(1)根据相似比可确定三点的坐标,从而可画出并写出点坐标;(2)根据相似比即可确定点的坐标【详解】(1)如图所示:ABC即为所求,;故答案为:(2)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P的坐标为:故答案为:【点睛】本题考查了在坐标系中作位似图形,求位似图形对应的坐标,关键是掌握位似图形的含义