精品解析2022年人教版九年级数学下册第二十九章-投影与视图单元测试试题(含详解).docx
-
资源ID:28195620
资源大小:447.93KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年人教版九年级数学下册第二十九章-投影与视图单元测试试题(含详解).docx
人教版九年级数学下册第二十九章-投影与视图单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面的三视图所对应的几何体是()ABC D2、如图所示,该几何体的俯视图是ABCD3、如图所示的几何体的俯视图是( )ABCD4、如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是( )ABCD5、分别从正面、左面和上面三个方向看下面哪个几何体,能得到右图所示的平面图形( )ABCD6、如图所示的几何体的主视图是()ABCD7、如图所示的几何体的从左边看的视图是()ABCD8、如图所示的几何体从左面看到的图形是( )ABCD9、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )ABCD10、下列几何体中,俯视图为三角形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个圆柱体的三视图如图所示,根据图中数据计算圆柱的体积为_(答案含)2、如图为一个圆锥的三视图,这个圆锥的侧面积为_3、三视图中的三个视图完全相同的几何体可能是_(列举出两种即可)4、如图,是一个由若干个小正方体搭成的几何体的主视图与视图,设搭这样的几何体最多需要m块小立方块,最少需要n块小立方块,则m+n=_5、如图,用小木块搭一个几何体,它的主视图和俯视图如图所示问:最少需要_个小正方体木块,最多需要_个小正方体木块三、解答题(5小题,每小题10分,共计50分)1、如图,在平整的地面上,若干个棱长都为的小正方体堆成一个几何体(1)在网格中,用实线画出从正面,上面,左面看到的形状图;(2)求这个几何体的体积和表面积2、如图所示的几何体是由几个相同的小正方体排成2行组成的(1)填空:这个几何体由_个小正方体组成;(2)画出该几何体的三个视图(3)若每个小正方体的边长为1cm,则这个几何体的表面积为 cm23、如图是用10块完全相同的小正方体搭成的几何体(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用_块小正方体搭成的4、(1)请在网格中画出如图所示的几何体的主视图、左视图、俯视图;(2)已知每个小正方体的棱长为1,求该几何体的表面积5、如图为一个机器零件的三视图(俯视图是一个正三角形)(1)画出这个机器零件的几何体并说出几何体的名称;(2)根据图中标注的数据算出这个几何体的表面积-参考答案-一、单选题1、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状2、D【分析】根据俯视图是从物体上面向下面正投影得到的投影图,即可求解【详解】解:根据题意得:D选项是该几何体的俯视图故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键3、D【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:结合所给几何体,其俯视图应为一个正方形,然后在正方形内部的左下角还有一个小长方形,故选D【点睛】本题主要考查了简单几何体的三视图,熟知三视图的定义是解题的关键4、C【分析】长方体的左视图为矩形,圆柱的左视图为矩形,据此分析即可得左视图【详解】从左面可看到一个长方形和一个长方形,且两个长方形等高故选C【点睛】本题考查了简单几何题的三视图,掌握简单几何题的三视图是解题的关键5、D【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱【详解】解:主视图和左视图都是长方形,此几何体为柱体,俯视图是一个三角形,此几何体为三棱柱故选:D【点睛】本题主要考查了由三视图判断几何体,解题的关键是熟练掌握由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状6、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,如图:故选:A【点睛】此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键7、C【分析】根据左视图是从左面看到的图形判定则可【详解】解:从左边看,是一个大正方形右上角有一个小正方形,故选:C【点睛】本题考查简单组合体的三视图,正确掌握观察角度是解题关键8、D【分析】左视图就是从几何体的左边看所得到的图形,实际上就是从左面“正投影”所得到的图形【详解】解:观察几何体,从左面看到的图形是两个大小不一的圆,如图所示: 故选:D【点睛】本题考查了几何体的三视图,解题的关键是正确理解三视图的意义9、B【分析】根据左视图是从左面看得到的图形,可得答案【详解】解:从左边看,上面一层是一个正方形,下面一层是两个正方形,故选B【点睛】本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键10、(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b错误,应该是a6,b11,a+b17故选:B【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键19D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图【详解】从上方朝下看只有D选项为三角形故选:D【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形从视图反过来考虑几何体时,它有多种可能性例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力二、填空题1、24【解析】【分析】根据主视图确定出圆柱体的底面直径与高,根据圆柱体的体积公式列式计算即可【详解】解:由图知,圆柱体的底面直径为4,高为6,V圆柱=r2h=×22×6=24故答案为24【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的体积公式根据主视图确定出圆柱体的底面直径与高是解题的关键2、【解析】【分析】利用三视图得到这个圆锥的高为8mm,底面圆的半径为6mm,再利用勾股定理计算出圆锥的母线长,然后利用扇形的面积公式计算圆锥的侧面积【详解】解:这个圆锥的高为8mm,底面圆的半径为6mm,所以圆锥的母线长=(mm),所以圆锥的侧面积=(mm2)故答案为:【点睛】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状也考查了圆锥的计算3、正方体,球体【解析】【分析】几何体的三视图包括主视图、左视图、俯视图,根据定义选取三视图完全相同的几何体即可【详解】解:正方体的主视图、左视图、俯视图都是正方形,且每个正方形大小相同;球体的主视图、左视图、俯视图,都是圆,且每个圆的大小相同故答案为:正方体,球体【点睛】本题考查几何体的三视图,牢记主视图、左视图、俯视图的定义是做题的重点4、15【解析】【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可【详解】解:有两种可能;有主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多m为3+4+1=8个小立方块,最少n为个2+4+1=7小立方块m+n=15,故答案为:15【点睛】此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案5、 10 16【解析】【分析】综合三视图,这个几何体中底层最多有3+3+1=7个小正方体,最少也有7个小正方体,第二层最多有2×3=6个小正方体,最少有2个小正方体,第三层最多有3个小正方体,最少有1个小正方体,因此这个几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体木块【详解】解:综合三视图的知识,该几何体底面最多有7个小正方形,最少也是7个小正方形,第二层最多有6个小正方形,最少有2个,而第三层最多有3个小正方形,最少有1个,故这个几何体最少有10个小正方形,最多有16个,故答案为:10,16【点睛】本题要根据最多和最少两种情况分别进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”得出结果三、解答题1、(1)见解析;(2),【分析】(1)根据三视图的定义画出图形即可(2)分前后,左右,上下三个方向统计正方形的个数即可求出表面积,根据个数即可得出体积【详解】解:(1)该几何体从正面、上面、左面看到的形状图如图:(2)因为该几何体由8个棱长都为的正方体堆成,每个正方体的体积都为,所以其体积为;该几何体前后各有4个小正方形,上下各有6个小正方形,左右各有5个小正方形,每个小正方形的面积为,所以其表面积为【点睛】本小题考查几何体、三视图等基础知识,考查空间观念与几何直观,解题的关键是熟练掌握基本知识,属于中考常考题型2、(1)7;(2)见解析;(3)【分析】(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,即可求解;(2)根据几何体的三视图的画法,画出图形,即可求解;(3)根据几何体的表面积公式,即可求解【详解】解:(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,这个几何体由4+2+1=7个小正方体组成;(2)该几何体的三个视图如图所示:(3)根据题意得:这个几何体的表面积为 【点睛】本题主要考查了画几何体的三视图,求几何体的表面积,熟练掌握几何体三视图的特征是解题的关键3、(1)见解析;(2)9或11【分析】(1)根据三视图的定义画图即可;(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,由此即可得到答案【详解】(1)画出的三视图如图所示:(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,这个几何体还可以由9个或11个小正方体组成【点睛】本题主要考查了画小立方体组成的几何体的三视图,由三视图求小立方体个数,解题的关键在于能够正确观察图形求解4、(1)见解析;(2)26cm2【分析】(1)根据三视图的画法画出相应的图形即可;(2)根据三视图的面积求出几何体的表面积即可【详解】解:(1)三视图如下(2)该几何体的表面积为【点睛】本题考查简单几何体的三视图,熟练掌握三简单几何体的三视图的特点是解答的关键5、(1)图见解析,直三棱柱;(2)72【分析】(1)有2个视图的轮廓是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么该几何体为三棱柱;(2)根据正三角形一边上的高可得正三角形的边长,表面积=侧面积+2个底面积=底面周长×高+2个底面积【详解】解:(1)符合这个零件的几何体是直三棱柱;(2)ABC是正三角形,又CDAB,CD=6,AC=,S表面积=4×4×3+×4×6×2,=72(cm2)【点睛】本题考查了由三视图判断几何体及几何体表面积的计算;得到几何体的形状是解题的突破点;得到底面的边长是解决本题的易错点