精品解析2022年最新人教版初中数学七年级下册-第六章实数定向测评试题(无超纲).docx
-
资源ID:28195818
资源大小:222.75KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年最新人教版初中数学七年级下册-第六章实数定向测评试题(无超纲).docx
初中数学七年级下册 第六章实数定向测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、点A在数轴上的位置如图所示,则点A表示的数可能是( )ABCD2、下列说法正确的是( )A0.01是0.1的平方根 B小于0.5C的小数部分是D任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方如此进行下去,得到的数会越来越趋近13、下列说法正确的是( )A是最小的正无理数B绝对值最小的实数不存在C两个无理数的和不一定是无理数D有理数与数轴上的点一一对应4、在以下实数:,3.1411,8,0.020020002中,无理数有()A2个B3个C4个D5个5、估算的值是在( )之间A5和6B6和7C7和8D8和96、下列说法正确的是( )A5是25的算术平方根B的平方根是±6C(6)2的算术平方根是±6D25的立方根是±57、平方根和立方根都等于它本身的数是( )A±1B1C0D18、a为有理数,定义运算符号:当a2时,aa;当a2时,a a;当a2时,a 0根据这种运算,则4(25)的值为()AB7CD19、下列各数中,3.1415,0.321,2.32232223(相邻两个3之间的2的个数逐次增加1),无理数有( )A0个B1个C2个D3个10、下列判断:10的平方根是±;与互为相反数;0.1的算术平方根是0.01;()3a;±a2其中正确的有()A1个B2个C3个D4个二、填空题(5小题,每小题4分,共计20分)1、的平方根是_2、已知4321849,4421936,4522025,4622116,若n为整数,且nn+1,则n的值为 _3、0.064的立方根是_4、立方等于-27的数是_.5、绝对值不大于4且不小于的整数分别有_三、解答题(5小题,每小题10分,共计50分)1、已知的平方根是,的立方根是2,(1)求的值;(2)求的算术平方根2、求下列各式中x的值(1)3x 2 =27(2)(x+1)3-3= -673、已知一个正数的平方根是a+6与2a9,(1)求a的值;(2)求关于x的方程的解4、已知 a、b互为相反数,c、d互为倒数,x 是4的平方根,求的值5、求下列各式的值:(1)3;(2);(3);(4)-参考答案-一、单选题1、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解【详解】解:观察得到点A表示的数在4至4.5之间,A、16<18<20.25,4<<4.5,故该选项符合题意;B、9<10<16,3<<4,故该选项不符合题意;C、20.25<24<25,4.5<<5,故该选项不符合题意;D、25<30<36,5<<6,故该选项不符合题意;故选:A【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键2、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键3、C【分析】利用正无理数,绝对值,以及数轴的性质判断即可【详解】解:、不存在最小的正无理数,不符合题意;、绝对值最小的实数是0,不符合题意;、两个无理数的和不一定是无理数,例如:,符合题意;、实数与数轴上的点一一对应,不符合题意故选:C【点睛】本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质4、B【分析】根据“无限不循环的小数是无理数”可直接进行排除选项【详解】解:,在以下实数:,3.1411,8,0.020020002中,无理数有,0.020020002;共3个;故选B【点睛】本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键5、C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故【详解】故选:C【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键6、A【分析】如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可【详解】解:A、5是25的算术平方根,正确,符合题意;B、,6的平方根是±,错误,不符合题意;C、(6)2的算术平方根是6,错误,不符合题意;D、25的平方根是±5,错误,不符合题意;故选:A【点睛】本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键7、C【分析】根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0【详解】解:平方根是本身的数有0,立方根是本身的数有1,-1,0;平方根和立方根都是本身的数是0故选C【点睛】本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b0),满足,那么a就叫做b的平方根;如果有两个数c、d满足,那么c就叫做d的立方根8、A【分析】定义运算符号:当a2时,aa;当a2时,a a;当a2时,a 0先判断a的大小,然后按照题中的运算法则求解即可【详解】解:且当时,a=a,(-3)=-3,4+(2-5)=4-3=1>-2,当a>-2时,a=-a,4+(2-5)=1=-1,故选:A【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算9、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,2.32232223(相邻两个3之间的2的个数逐次增加1),共3个故选:D【点睛】此题考查了无理数解题的关键是掌握实数的分类10、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错【详解】解:10的平方根是±,正确;是相反数,正确;0.1的算术平方根是,故错误;()3a,正确;a2,故错误;正确的是,有3个故选:C【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根二、填空题1、【解析】【分析】先求出,再根据平方根性质,即可求解【详解】解:,的平方根是 故答案为:【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键2、44【解析】【分析】由已知条件的提示可得,即,从而可得答案【详解】解:,即 又,n为整数,故答案为:44【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键3、0.4【解析】【分析】根据立方根的定义直接求解即可【详解】解:,0.064的立方根是0.4故答案为:0.4【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义4、-3【解析】【分析】根据立方根的定义解答即可【详解】解:(-3)3=-27,立方等于-27的数是-3故答案为-3【点睛】本题考查了有理数的乘方,熟悉乘方和立方根的定义是解题的关键5、4和-4或-4和4【解析】【分析】根据绝对值的意义及实数的大小比较可直接进行求解【详解】解:由绝对值不大于4且不小于的整数分别有4和;故答案为4和【点睛】本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键三、解答题1、(1)a=5、b=2、c=1或c=0;(2)或3【解析】【分析】(1)根据平方根和立方根的定义可确定a、b的值,再根据一个数的立方根和算术平方根相等的数是0和1,可以确定c;(2)分c=0和c=1两张情况分别解答即可【详解】解:(1)的平方根是,的立方根是2a=5,2b+4=8,即b=2c=1或c=0a=5、b=2、c=1或c=0;(2)当c=1时,=当c=0时,=3;的算术平方根为或3【点睛】本题主要考查了平方根、立方根、算术平方根的定义,灵活运用相关定义并正确确定c的值成为解答本题的关键2、(1)x= ±3;(2)x=-5【解析】【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可【详解】解:(1)解得;(2)解得,【点睛】此题考查了利用平方根和立方根的性质求解方程,解题的关键是掌握平方根和立方根的有关性质3、(1);(2)【解析】【分析】(1)根据一个正数有两个平方根,这两个平方根互为相反数解答即可,(2)根据(1)中求出的的值,直接解方程即可【详解】解:(1)由题意得,解得,;(2)由(1)得,【点睛】本题考查的是平方根的概念和应用,掌握一个正数有两个平方根,这两个平方根互为相反数是解题的关键,4、或【解析】【分析】根据相反数、倒数的定义,可得出a+b=0,cd=1,解出x的值后代入即可得出答案【详解】解:因为,互为相反数,所以,因为、互为倒数,所以,因为是4的平方根,所以,所以:或【点睛】本题考查了代数求值,根据倒数、相反数的定义得出a+b=0,cd=1,是解题关键5、(1)15;(2)15;(3);(4)【解析】【分析】(1)先计算算术平方根,再计算乘法即可得;(2)先计算算术平方根,再计算加法即可得;(3)先计算算术平方根,再计算减法即可得;(4)先计算算术平方根,再计算乘法即可得【详解】解:(1)原式;(2)原式;(3)原式;(4)原式【点睛】本题考查了算术平方根、有理数的乘法与加减法运算,熟练掌握各运算法则是解题关键