精品试题北师大版九年级数学下册第一章直角三角形的边角关系专项测评试题(含解析).docx
-
资源ID:28197277
资源大小:720.34KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试题北师大版九年级数学下册第一章直角三角形的边角关系专项测评试题(含解析).docx
九年级数学下册第一章直角三角形的边角关系专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在RtABC中,C =90°,sinA=,则cosA的值等于( )ABCD2、在中,则的值是( )ABCD3、如图所示,九(二)班的同学准备在坡角为的河堤上栽树,要求相邻两棵树之间的水平距离为8 m,那么这两棵树在坡面上的距离AB为( )A8mB mC8sina mD m4、在RtABC中,C90°,sinA,则cosB等于( )ABCD5、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C处,若AB = 4,DE = 8,则sinCED为()A2BCD6、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD7、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值是( )A-20B20C5D58、计算的值等于( )AB1C3D9、若tanA=2,则A的度数估计在( )A在0°和30°之间B在30° 和45°之间C在45°和60°之间D在60°和90°之间10、等腰三角形的底边长,周长,则底角的正切值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知RtABC中,斜边BC上的高AD4,cosB,则AC_2、如图所示为4×4的网格,每个小正方形的边长均为1,则四边形AECF的面积为_;tanFAE=_3、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化经测量发现,当小明站在点A处时,塔顶D的仰角为37°,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53°,则观光塔CD的高度约为 _.(精确到0.1米,参考数值:tan37°,tan53°)4、在矩形ABCD中,BC3AB,点P在直线BC上,且PCAB,则APB的正切值为 _5、如图,直线MN过正方形ABCD的顶点A,且NAD30°,AB2,P为直线MN上的动点,连BP,将BP绕B点顺时针旋转60°至BQ,连CQ,CQ的最小值是 _三、解答题(5小题,每小题10分,共计50分)1、如图,平地上两栋建筑物AB和CD相距30m,在建筑物AB的顶部测得建筑物CD底部的俯角为26.6°,测得建筑物CD顶部的仰角为45°求建筑物CD的高度(参考数据:sin26.6°0.45,cos26.6°0.89,tan26.6°0.50)2、(1)计算:2cos30°(1)2021;(2)解方程组:3、如图,在平面直角坐标系中,直线ykx3k交x轴于点B,交y轴于点A,tanABO2(1)求k的值;(2)点G为线段AB上一点,过点G作CGAB交y轴正半轴于点C,若点G的横坐标为t,线段OC的长为d,求d与t之间的函数关系式,并直接写出t的取值范围;(3)如图3,在(2)的条件下,延长GC交x轴于点D,连接BC,在BC上截取BHOC,F为第一象限内一点,且FBx轴,连接FH,点E在第三象限,连接AE、BE、DE,若CBO2FHB,AEB+OBC90°,且BF,DE,求点E坐标4、如图,在平面直角坐标系中,点A(-m,m)(m>0)在反比例函数(x<0)的图象上,点C在反比例函数(x>0)的图象上,矩形ABCD与坐标轴的交点分别为H,E,F,G,ABy轴连接AE,AF,分别交坐标轴于点M,N,连接MN(1)猜想:EAF的度数是定值吗?若是,请求出度数;若不是,请说明理由;(2)若M为OH的中点,求tanANM5、求值:(结果保留根号)-参考答案-一、单选题1、A【分析】由三角函数的定义可知sinA=,可设a=4,c=5,由勾股定理可求得b=3,再利用余弦的定义代入计算即可【详解】解:sinA=,可设a=4,c=5,由勾股定理可求得b=3,cosA=,故选:A【点睛】本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键2、B【分析】根据题意,画出图形,结合余弦函数的定义即可求解【详解】解:由题意,可得图形如下:根据余弦函数的定义可得,故选:B【点睛】此题考查了余弦函数的定义,解题的关键是根据题意画出图形,并掌握余弦函数的定义3、B【分析】运用余弦函数求两树在坡面上的距离AB【详解】解:坡角为,相邻两树之间的水平距离为8米,两树在坡面上的距离(米)故选:B【点睛】此题主要考查解直角三角形中的坡度坡角问题及学生对坡度坡角的掌握及三角函数的运用能力4、A【分析】由知道A=30°,即可得到B的度数即可求得答案【详解】解:在RtABC中,C90°,A=30°,B=60°,故选A【点睛】本题主要考查了特殊角的锐角三角函数值,直角三角形两锐角互余,解题的关键是正确识记30°角的正弦值和60度角的余弦值5、B【分析】由折叠可知,CD=CD=4,再根据正弦的定义即可得出答案【详解】解:纸片ABCD是矩形,CD=AB,C=90°,由翻折变换的性质得,CD=CD=4,C=C=90°,故选:B【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边6、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键7、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作BDy轴于D,SOBC=2,BD=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=1×5=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形8、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键9、D【分析】由题意直接结合特殊锐角三角函数值进行分析即可得出答案.【详解】解:,.故选:D.【点睛】本题考查特殊锐角三角函数值的应用,熟练掌握是解题的关键.10、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键二、填空题1、【分析】根据题意,则,即可求得【详解】解: RtABC中,故答案为:【点睛】本题考查了同角的余角互余,余弦的定义,求得是解题的关键2、4, 【分析】(1)利用分割的思想得,即可求出;(2)连接,过点作,垂足为点,利用勾股定理求出即可求出【详解】解:(1)(2)连接,过点作,垂足为点,故答案为:4,【点睛】本题考查了勾股定理,锐角三角函数,解题的关键是利用分割的思想进行求解3、8.6米【分析】根据题意,利用锐角三角函数解直角三角形即可【详解】解:由题意知,A=37°,DBC=53°,D=90°,AB=5,在RtCBD中,tanDBC=,BC=,在RtCAD中,tanA=,即=tan37°解得:CD=8.6,答:观光塔CD的高度约为8.6米【点睛】本题考查解直角三角形的实际应用,熟练掌握锐角三角函数解直角三角形的方法是解答的关键4、或【分析】由题意可知当P在AB上时,P是AB的中点,即AB=BP;当P在AB延长线上时,BP=3AB,在直角三角形中由正切公式求出即可【详解】解:(1)如图1所示,BC=3AB,PC=AB,BP=2PC,又四边形ABCD是矩形,tanAPB=;(2)如图2所示,BC=3ABPC=AB,BP=4AB,tanAPB=综上所述APB的正切值为或故答案为:或【点睛】本题主要考查矩形性质和三角函数的定义,注意分类讨论思想的运用,解题的关键是分两种情况求出AB与BP的关系5、#【分析】如图,连接交于 则 先证明 把绕顺时针旋转得到 证明 可得三点共线,在上运动,过作于 则重合时,最短,再求解 从而可得答案.【详解】解:如图,连接PQ交于 则 是等边三角形, 正方形 把绕顺时针旋转得到 则 三点共线, 在上运动,过作于 则重合时,最短, 是等边三角形,记交于 所以CQ的最小值是,故答案为:【点睛】本题考查的是正方形的性质,相似三角形的性质,锐角三角函数的应用,得到的运动轨迹是解本题的关键.三、解答题1、建筑物CD的高度约为45m【分析】如图所示,过点A作AECD于E,先证明AE=CE,然后证明四边形ABDE是矩形,则AE=BD=30m,CE=AE=30m,由此即可得到答案【详解】解:如图所示,过点A作AECD于E,AEC=AED=90°,CAE=45°,C=45°,C=CAE,AE=CE,ABBD,CDBD,ABD=BDE=90°,四边形ABDE是矩形,AE=BD=30m,CE=AE=30m,CD=CE+DE=45m,答:建筑物CD的高度约为45m【点睛】本题主要考查了矩形的性质与判定,等腰直角三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线求解2、(1)1;(2)【分析】(1)利用二次根式性质,负整数指数幂法则,特殊角的三角函数值,以及乘方的意义计算即可得到结果;(2)利用代入消元法求出解即可【详解】解:(1)原式222×(1)22+11;(2),由得:x2y3,把代入得:6y9y+5,解得:y2,把y2代入得:x1,则方程组的解为【点睛】本题考查了实数计算和解方程组,解题关键是熟记特殊角三角函数值,熟练运用负指数、二次根式和解二元一次方程组的方法求解3、(1)k=-2;(2)d=6-,(3)点E()【分析】(1)先求出直线ykx3k交x轴于点B(3,0),OB=3,根据三角函数求出tanABO2=,点A(0,6)利用待定系数法求即可;(2)过G作GLx轴于L,根据点G的横坐标为t,得出OL=t,BL=3-t,利用三角函数求出GL=6-2t,根据勾股定理AB=,GB=,利用线段差求出GA=AB-GB=,再求出cosOAB=,得出AC=即可;(3)作OBC的平分线交y轴于T,过O作OQBT交BC与Q,交BT于V,过B作BSAE于S,过E作EJx轴于点J,根据角平分线可得OBT=CBT=,根据CBO2FHB,得出OBT=CBT=,先证OCQHBF(ASA),得出CQ=BF=,再证OBVQBV(ASA),得出OB=QB=3,可求BC=CQ+BQ=,利用勾股定理在RtCOB中,OC=,求出d=,可证AC=OA-OC=6-=BC,再证CG为AB的垂直平分线,可证ASB为等腰直角三角形,求出SB=ABcos45°,再证EBSCBO,可求,可求OD=2OC=, 设OJ=m,JD=OD-OJ=,BJ=3+m,根据勾股定理JE2=即解得, 即可【详解】解:(1)直线ykx3k交x轴于点B,当y=0时,x=3,点B(3,0),OB=3,tanABO2=,OA=6,点A(0,6),点A在直线ykx3k上,3k=6,k=-2;(2)过G作GLx轴于L,点G的横坐标为t,OL=t,BL=3-t,tanABO2=,GL=6-2t,在RtAOB中AB=,在RtGLB中GB=,GA=AB-GB=,cosOAB=,cosOAB=cosGAC=,AC=,CO=OA-AC=6-,d=6-,d=6-,();(3)作OBC的平分线交y轴于T,过O作OQBT交BC与Q,交BT于V,过B作BSAE于S,过E作EJx轴于点J,OBT=CBT=,CBO2FHB,OBT=CBT=,BFx轴,BFy轴,OCQ=FBH,BQBT,COQ+QOB=90°,QOB+EBO=90°,COQ=TBO=FHB,在OCQ和HBF中,OCQHBF(ASA),CQ=BF=,在OBV和QBV中,OBVQBV(ASA),OB=QB=3,BC=CQ+BQ=,在RtCOB中,OC=,d=,AC=OA-OC=6-=BC,CGAB,CG为AB的垂直平分线,点S在CG上,SA=SB,BSAE,ASB为等腰直角三角形,SB=ABcos45°,AEB+OBC90°,OCB+OBC=90°,AEB=OCB,BSAE,ESB=COB=90°,EBSCBO,即,tanDCO=tanABO=,OD=2OC=,DB=OD+OB=,设OJ=m,JD=OD-OJ=,BJ=3+m,根据勾股定理JE2=即,解得,JE2=,解得,点E()【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式,锐角三角函数值,勾股定理,角平分定义,三角形完全判定与性质,三角形相似判定与性质,等腰三角形性质,线段垂直平分线性质,根据勾股定理列拓展一元一次方程,完全平方公式,本题难度大,涉及知识多,图形复杂,需滤清思路,利用辅助作出准确图形是解题关键4、(1)是定值,EAF=45°;(2)3【分析】(1)连接AO,由点的坐标可得四边形AHOG为正方形,然后利用勾股定理得出,根据点C所在的反比例函数解析式可得:,利用等量代换得出:,根据相似三角形的判定和性质可得:,结合图形,由各角之间的数量关系即可得出结果;(2)OH的延长线上取点P,使得,连接AP,用正方形半角模型得,设正方形AHOG的边长为2a,即可得出各边长,然后利用勾股定理得出,根据正切函数的性质求解即可【详解】解:(1)证明:如图,连接AO,点,四边形AHOG为正方形,根据点C所在的反比例函数解析式可得:,又,为定值;(2)解:如图,在OH的延长线上取点P,使得,连接AP,利用正方形半角模型即:将AGN旋转到APH位置,得,设正方形AHOG的边长为2a,则,设,则,由勾股定理得,即:,得,【点睛】题目主要考查反比例函数图象与图形的结合问题,包括正方形的判定和性质,相似三角形的判定和性质,图形的旋转,正切函数等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键5、【分析】利用,代入,利用二次根式的计算法则计算即可【详解】解:,【点睛】本题考查了特殊值的三角函数值,和二次根式的混合运算,熟记特殊值的三角函数值和二次根式的运算法则是解题关键