北师大版七年级数学下册第四章三角形专题训练试题(无超纲).docx
-
资源ID:28198134
资源大小:453.06KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
北师大版七年级数学下册第四章三角形专题训练试题(无超纲).docx
北师大版七年级数学下册第四章三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、三角形的外角和是()A60°B90°C180°D360°2、如图,已知BAC=ABD=90°,AD和BC相交于O在AC=BD;BC=AD;C=D;OA=OB条件中任选一个,可使ABC BAD可选的条件个数为()A1B2C3.D43、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )ABCD4、如图,点、在同一条直线上,已知,添加下列条件中的一个:;其中不能确定的是( )ABCD5、如图, BD是ABC的中线,AB=6,BC=4,ABD和BCD的周长差为( ) A2B4C6D106、如图,点,在一条直线上,则( )A4B5C6D77、以下列长度的三条线段为边,能组成三角形的是( )ABCD8、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组A,B,C,D,9、下列四个图形中,BE不是ABC的高线的图是()ABCD10、如图,平分,连接,并延长,分别交,于点,则图中共有全等三角形的组数为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABCD,若要判定ABDCDB,则需要添加的一个条件是 _2、如图,在中,D、E分别为AC、BC边上一点,AE与BD交于点F已知,且的面积为60平方厘米,则的面积为_平方厘米;如果把“”改为“”其余条件不变,则的面积为_平方厘米(用含n的代数式表示)3、我们将一副三角尺按如图所示的位置摆放,则_°4、如图,点C是线段AB的中点,请你只添加一个条件,使得(1)你添加的条件是_;(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定与全等的理由是_5、如图,ABC的面积等于35,AEED,BD3DC,则图中阴影部分的面积等于 _ 三、解答题(5小题,每小题10分,共计50分)1、在ABC中,ACB90°,ACBC,直线MN经过点C,且ADMN于D,BEMN于E(感知)(1)当直线MN绕点C旋转到图的位置时,易证ADCCEB(不需要证明),进而得到DE、AD、BE之间的数量关系为 (探究)(2)当直线MN绕点C旋转到图的位置时,求证:DEADBE(3)当直线MN绕点C旋转到图的位置时,直接写出DE、AD、BE之间的数量关系2、已知:如图,CDBE,CDBE,ADCE求证:ACDCBE3、如图,点C、F在BE上,BF=EC,ABDE,且A=D,求证:AC=DF4、如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题(注:此题作图不要求写出画法和结论)(1)分别连接AB、AD,作射线AC,作直线BD与射线AC相交于点O;(2)我们容易判断出线段AB+AD与BD的数量关系是 ,理由是 5、平行线是平面几何中最基本、也是非常重要的图形在解决某些几何问题时,若能根据问题的需要,添加适当的平行线,往往能使证明顺畅、简洁请根据上述思想解决问题:(1)如图(1),ABCD,试判断B,D与E的关系;(2)如图(2),已知ABCD,在ACD的角平分线上取两个点M、N,使得AMN=ANM,求证:CAM=BAN-参考答案-一、单选题1、D【分析】根据三角形的内角和定理、邻补角的性质即可得【详解】解:如图,又,即三角形的外角和是,故选:D【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键2、D【分析】先得到BAC=ABD=90°,若添加AC=BD,则可根据“SAS”判断ABCBAD;若添加BC=AD,则可利用“HL”证明RtABCRtBAD,若添加C=D,则可利用“AAS”证明ABCBAD;若添加OA=OB,可先根据“ASA”证明AOCBOD得C=D,则可利用“AAS”证明ABCBAD【详解】解:在ABC和BAD中, ABCBAD故选AC=BD可使ABC BADBAC=ABD=90°,ABC和BAD均为直角三角形在RtABC和RtBAD中, RtABCRtBAD故选BC=AD可使ABC BAD在ABC和BAD中, ABCBAD故选C=D可使ABC BADOA=OB BAC=ABD=90°, 在AOC和BOD中, AOCBOD 在ABC和BAD中, ABCBAD故选OA=OB可使ABC BAD可选的条件个数有4个故选:D【点睛】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”3、C【分析】根据三角形的三边关系可得,再解不等式可得答案【详解】解:设三角形的第三边为,由题意可得:,即,故选:C【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边4、B【分析】由已知条件知可得:A=D,AB=DE,再结合全等三角形的判定定理进行解答即可.【详解】解:已知条件知:A=D,AB=DE A、当添加AC=DF时,根据SAS能判,故本选项不符合题意;B、当添加BC=EF时则BC=EF,根据SSA不能判定,故本选项符合题意;C、当添加时,根据ASA能判定,故本选项不符合题意;D、当添加时,根据AAS能判定,故本选项不符合题意.故选:B.【点睛】本题主要考查了全等三角形的判定定理,理解SSA不能判定三角形全等成为解答本题的关键.5、A【分析】根据题意可得,ABD和BCD的周长差为线段的差,即可求解【详解】解:根据题意可得,ABD的周长为,BCD的周长为ABD和BCD的周长差为故选:A【点睛】本题考查了三角形中线的性质及三角形周长的计算,熟练掌握三角形中线的性质是解答本题的关键6、A【分析】由题意易得,然后可证,则有,进而问题可求解【详解】解:,;故选A【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键7、D【分析】根据三角形的三边关系,即可求解【详解】解:A、因为 ,所以不能构成三角形,故本选项不符合题意;B、因为 ,所以不能构成三角形,故本选项不符合题意;C、因为 ,所以不能构成三角形,故本选项不符合题意;D、因为 ,所以能构成三角形,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键8、D【分析】利用三角形的三边关系,即可求解【详解】解:根据三角形的三边关系,得:A、,不能组成三角形,不符合题意;B、,不能够组成三角形,不符合题意;C、,不能够组成三角形,不符合题意;D、,能够组成三角形,符合题意故选:D【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边只差小于第三边是解题的关键9、C【分析】利用三角形的高的定义可得答案【详解】解:BE不是ABC的高线的图是C,故选:C【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高10、C【分析】求出BADCAD,根据SAS推出ADBADC,根据全等三角形的性质得出BC,ADBADC,求出ADEADF,根据ASA推出AEDAFD,根据全等三角形的性质得出AEAF,根据SAS推出ABFACE,根据AAS推出EDBFDC即可【详解】解:图中全等三角形的对数有4对,有ADBADC,ABFACE,AEDAFD,EDBFDC,理由是:AD平分BAC,BADCAD,在ADB和ADC中ADBADC(SAS),BC,ADBADC,EDBFDC,ADBEDBADCFDC,ADEADF,在AED和AFD中AEDAFD(ASA),AEAF,在ABF和ACE中ABFACE(SAS),ABAC,AEAF,BECF,在EDB和FDC中EDBFDC(AAS),故选:C【点睛】本题考查了全等三角形的判定定理和性质定理,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等二、填空题1、1=2(或填AD=CB)【分析】根据题意知,在ABD与CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加1=2即可由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【详解】解:在ABD与CDB中,AB=CD,BD=DB,添加1=2时,可以根据SAS判定ABDCDB,添加AD=CB时,可以根据SSS判定ABDCDB,故答案为1=2(或填AD=CB).【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角2、6 【分析】连接CF,依据ADCD,BE2CE,且ABC的面积为60平方厘米,即可得到SBCDSABC30,SACESABC20,设SADFSCDFx,依据SACESFEC+SAFC,可得,解得x6,即可得出ADF的面积为6平方厘米;当BEnCE时,运用同样的方法即可得到ADF的面积.【详解】如图,连接CF,ADCD,BE2CE,且ABC的面积为60平方厘米,SBCDSABC30,SACESABC20,设SADFSCDFx,则SBFCSBCDSFDC30x,SFECSBFC(30x),SACESFEC+SAFC,解得x6,即ADF的面积为6平方厘米;当BEnCE时,SAEC,设SAFDSCFDx,则SBFCSBCDSFDC30x,SFECSBFC(30x),SACESFEC+SAFC,解得,即ADF的面积为平方厘米;故答案为:【点睛】本题主要考查了三角形的面积的计算,解决问题的关键是作辅助线,根据三角形之间的面积关系得出结论解题时注意:三角形的中线将三角形分成面积相等的两部分3、45【分析】利用三角形的外角性质分别求得和的值,代入求解即可【详解】解:根据题意,A=60°,C=30°,D=DBG=45°,ABC=DGB=DGC=90°,=DBG+C=75°,=DGC+C=120°,=120°-75°=45°,故答案为:45【点睛】本题考查了三角形的外角性质,解答本题的关键是明确题意,找到三角板中隐含的角的度数,利用数形结合的思想解答4、AD=CE(或D=E或ACD=B)(答案不唯一) SAS 【分析】(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;(2)根据添加的条件,写出判断的理由即可【详解】解:(1)添加的条件是:AD=CE(或D=E或ACD=B)故答案为:AD=CE(或D=E或ACD=B)(2)若添加:AD=CE点C是线段AB的中点,AC=BC (SAS)故答案为:SAS【点睛】本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键5、15【分析】连接DF,根据AEED,BD3DC,可得 , ,然后设AEF的面积为x,BDE的面积为y,则,再由ABC的面积等于35,即可求解【详解】解:如图,连接DF, AEED, ,BD3DC, ,设AEF的面积为x,BDE的面积为y,则,ABC的面积等于35, ,解得: 故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到 , ,是解题的关键三、解答题1、(1)DEADBE;(2)见解析;(3)DEBEAD(或ADBEDE,BEADDE等)【分析】(1)由已知推出ADC=BEC=90°,因为ACD+BCE=90°,DAC+ACD=90°,推出DAC=BCE,根据AAS即可得到ADCCEB,得到AD=CE,CD=BE,即可求出答案;(2)与(1)证法类似可证出ACD=EBC,能推出ADCCEB,得到AD=CE,CD=BE,代入已知即可得到答案;(3)与(1)(2)证法类似可证出ACD=EBC,能推出ADCCEB,得到AD=CE,CD=BE,代入已知即可得到答案;【详解】解:(1)证明:ADDE,BEDE,ADC=BEC=90°,ACB=90°,ACD+BCE=90°,DAC+ACD=90°,DAC=BCE,在ADC和CEB中 ADCCEB(AAS),AD=CE,CD=BE,DC+CE=DE,DE=AD+BE(2)证明:ADMN,BEMN,ADCCEB90°,又ACB90°,CADACD90°,ACDBCE90°CADBCEACBC,ADCCEBCEAD, CDBE,DECE CDADBE;(3)DE=BE-AD,理由:BEEC,ADCE,ADC=BEC=90°,EBC+ECB=90°,ACB=90°,ECB+ACE=90°,ACD=EBC,在ADC和CEB中,ADCCEB(AAS),AD=CE,CD=BE,DE=CD-CE=BE-AD(或ADBEDE,BEADDE等)【点睛】本题考查了邻补角的意义,同角的余角相等,直角三角形的性质,全等三角形的判定和性质等知识点,能根据已知证出符合全等的条件是解此题的关键,题型较好,综合性比较强2、见解析【分析】根据两直线平行,同位角相等,求出ACD=B,然后利用AAS即可证明ACDCBE【详解】证明:如图,在和中(AAS)【点睛】本题主要考查了全等三角形的判定,解题关键是掌握全等三角形判定方法,找准边角对应条件3、见解析【分析】由BF=EC可得BC=EF,由可得,再结合A=D可证,最后根据全等三角形的性质即可证明结论【详解】证明:已知,即,等式性质,两直线平行,内错角相等在和中,全等三角形对应边相等【点睛】本题考查了平行线的性质、全等三角形的判定和性质等知识点灵活运用全等三角形的判定定理成为解答本题的关键4、(1)见解析;(2)AB+ADBD,在三角形中,两边之和大于第三边【分析】(1)根据直线,射线,线段的作图方法作图即可;(2)根据三角形三边的关系:两边之和大于第三边进行求解即可【详解】解:(1)如图所示,即为所求;(2)我们容易判断出线段AB+AD与BD的数量关系是:AB+ADBD,理由是:在三角形中,两边之和大于第三边,故答案为:AB+ADBD,在三角形中,两边之和大于第三边【点睛】本题主要考查了三角形三边的关系,作直线,射线和线段,解题的关键在于能够熟练掌握相关知识进行求解5、(1)BED=BD;(2)证明见详解【分析】(1)作EFAB,证明ABEFCD,得到B=BEF,D=DEF,即可证明BED=BD;(2)根据(1)结论得到N=BANDCN,进而得到AMN=BANDCN,根据三角形外角定理得到AMN=ACMCAM,BANDCN=ACMCAM,再根据DCN=CAN,即可证明CAM=BAN【详解】解:如图1,作EFAB,ABCD,ABEFCD,B=BEF,D=DEF,BED=BEF+DEF,BED=BD;(2)证明:ABCD,由(1)得N=BANDCN,AMN=ANM,AMN=BANDCN,AMN是ACM外角,AMN=ACMCAM,BANDCN=ACMCAM,CN平分ACD,DCN=CAN,CAM=BAN【点睛】本题考查了平行线的性质,角平分线的定义,三角形的外角定理等知识,熟知相关定理并根据题意添加辅助线进行角的转化是解题关键