强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项攻克试卷(含答案详解).docx
-
资源ID:28198811
资源大小:375.69KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项攻克试卷(含答案详解).docx
第二章一元一次不等式和一元一次不等式组专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m>n,则下列不等式不成立的是()Am+4>n+4B4m<4nCDm4<n42、一个不等式的解集为x1,那么在数轴上表示正确的是()ABCD3、不等式的解集为( )ABCD4、下列不等式是一元一次不等式的是( )ABCD5、三角形的三边长分别为2,5,则x的取值范围是( )ABCD6、若mn,则下列选项中不成立的是()Am+4n+4Bm4n4CD4m4n7、关于x的方程32x3(k2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A5B2C4D68、下列说法正确的是( )A若ab,则3a2bB若ab,则ac2bc2C若2a2b,则abD若ac2bc2,则ab9、如图,已知正比例函数与一次函数的图象交于点,下面有四个结论:;时,;当时,;其中正确的是( )ABCD10、适合|2a+7|+|2a1|8的整数a的值的个数有()A2B4C8D16第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨,洁柔超值装的价格是其促销价的,而妮飘进口装的价格在其第一天的基础上增加了,第二天洁柔体验装与妮飘进口装的销量之比为,洁柔超值装的销量比第一天的销量减少了超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_元2、任何一个以x为未知数的一元一次不等式都可以变形为_(a0)的形式,所以解一元一次不等式相当于在某个一次函数_的值大于0或小于0时,求_的取值范围3、不等式组的解集为_4、如果一个三角形的两边长分别为2,5,则第三边x可以取的整数解为_5、若m与3的和是正数,则可列出不等式:_三、解答题(5小题,每小题10分,共计50分)1、解不等式组,并写出所有整数解(不画数轴)2、解方程组或不等式组:(1);(2)3、利用不等式的性质,将下列不等式转化为“ya”或“ya”的形式(1)5y-50(2)3y-126y(3)y-2y-54、解不等式3x1x+3,并把解在数轴上表示出来5、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:型号AB成本(万元/台)35售价(万元/台)48已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可【详解】解:Am>n,m+4>n+4,故该选项正确,不符合题意;Bm>n,故该选项正确,不符合题意;Cm>n,故该选项正确,不符合题意;Dm>n,故该选项错误,符合题意;故选:D【点睛】本题考查不等式的基本性质掌握不等式的基本性质“1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2不等式两边都乘(或除以)同一个正数,不等号的方向不变;3不等式两边都乘(或除以)同一个负数,不等号的方向改变”是解答本题的关键2、C【分析】根据数轴上数的大小关系解答【详解】解:解集为x1,那么在数轴上表示正确的是C,故选:C【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键3、D【分析】首先根据一元一次不等式的一般步骤,对其移项,合并同类项,将系数化为1即可得出答案【详解】移项得:,合并同类项得:,将系数化为1得:故选:D【点睛】本题考查了解一元一次不等式的知识,熟练掌握解不等式的一般步骤是解题的关键4、B【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可【详解】解:A、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B、是一元一次不等式,故此选项符合题意;C、是分式,故该不等式不是一元一次不等式,故此选项不合题意;D、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义5、D【分析】三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理列不等式组,再解不等式组即可得到答案.【详解】解: 三角形的三边长分别为2,5, 由得: 由得:所以: 所以x的取值范围是故选D【点睛】本题考查的是三角形三边的关系,掌握“利用三角形的三边关系列不等式组”是解本题的关键.6、D【分析】根据不等式的基本性质进行解答即可【详解】解:mn,A、m+4n+4,成立,不符合题意;B、m4n4,成立,不符合题意;C、,成立,不符合题意;D、4m4n,原式不成立,符合题意;故选:D【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键7、C【分析】先求出32x3(k2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k1,则1k3,再由整数k和是整数进行求解即可【详解】解:解方程32x3(k2)得x,方程的解为非负整数,0,把整理得:,由不等式组无解,得到k1,1k3,即整数k0,1,2,3,是整数,k1,3,综上,k1,3,则符合条件的整数k的值的和为4故选C【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解8、D【分析】利用不等式的性质,即可求解【详解】解:A、若ab,则3a3b,故本选项错误,不符合题意; B、若ab,当c0时,则ac2bc2,故本选项错误,不符合题意; C、若2a2b,则ab,故本选项错误,不符合题意; D、若ac2bc2,则ab,故本选项正确,符合题意; 故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键9、D【分析】根据正比例函数和一次函数的性质判断即可【详解】解:直线经过第一、三象限,k0,故正确;与y轴交点在负半轴,b0,故错误;正比例函数经过原点,且y随x的增大而增大,当x0时,y10;故正确;当x-2时,正比例函数在一次函数图象的下方,即kx,故错误故选:D【点睛】本题考查了一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断10、B【分析】先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值【详解】解:(1)当2a+70,2a10时,可得,2a+7+2a18,解得,a解不等式2a+70,2a10得,a,a,所以a,而a又是整数,故a不是方程的一个解;(2)当2a+70,2a10时,可得,2a72a+18,解得,a解不等式2a+70,2a10得,a,a,所以a,而a又是整数,故a不是方程的一个解;(3)当2a+70,2a10时,可得,2a+72a+18,解得,a可为任何数解不等式2a+70,2a10得,a,a,所以a,而a又是整数,故a的值有:3,2,1,0(4)当2a+70,2a10时,可得,2a7+2a18,可见此时方程不成立,a无解综合以上4点可知a的值有四个:3,2,1,0故选:B【点睛】本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解二、填空题1、【分析】设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,第二天,洁柔体验装的原价为: ,销售量为包,洁柔超值装的原价为: ,销售量为包,妮飘进口装的原价为: ,销售量为 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得,进而可得 为整数,即可求得,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 ,由 都是整数,则 能被 和整除的数即能被整除,即可求得,则这两天妮飘进口装的总销售额为,即 ,代入数值求解即可【详解】解:设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包, 则第二天,洁柔体验装的原价为:,销售量为包,洁柔超值装的原价为:,销售量为包,妮飘进口装的原价为:,销售量为包,即则第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元即即或 为整数,解得或 洁柔体验装的原价为:是整数,则,洁柔超值装的原价为:是整数则 第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,即解得都是整数,则能被和整除的数即能被整除故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键2、ax+b>0或ax+b<0 y=ax+b 自变量 【分析】根据一次函数图象与一元一次不等式的关系解答【详解】解:任何一个以x为未知数的一元一次不等式都可以变形为ax+b>0或ax+b<0 (a0)的形式,所以解一元一次不等式相当于在某个一次函数y=ax+b的值大于0或小于0时,求自变量的取值范围故答案为:ax+b>0或ax+b<0;y=ax+b;自变量【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k0)在x轴上(或下)方部分所有的点的横坐标所构成的集合3、【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【详解】解:解不等式得: 解不等式得:原不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组,掌握求不等式组的解集是解题的关键4、4、5、6【分析】根据三角形三边关系可得,得出整数解即可【详解】解:三角形的两边长分别为2,5,则,即,第三边x可以取的整数解为:4、5、6,故答案为:4、5、6【点睛】本题考查了三角形的三边关系,熟知两边之和大于第三边,两边之差小于第三边,是解本题的关键5、【分析】根据题意列出不等式即可【详解】若m与3的和是正数,则可列出不等式故答案为:【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键三、解答题1、不等式组的解集为:;整数解为:-1,0,1,2【分析】分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可【详解】解:, 解不等式得:,解不等式得:,不等式组的解集为:,不等式组的整数解为:-1,0,1,2【点睛】本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错2、(1);(2)【分析】(1)利用代入消元法求解即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可【详解】解:(1)由得:,将代入得,解得将代入得: 方程组的解为:;(2)解不等式组由得:,解得,由得:,解得,不等式组的解集为:【点睛】本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法3、(1)y1(2)y-4(3)y3【分析】根据不等式的性质转换即可(1)原式为5y-50两边都加上5得5y5两边除以5得y1(2)原式为3y-126y两边都加上12-6y得-3y12两边都除以-3得y-4(3)原式为y-2y-5两边都加上2y得-y-3两边都除以-1得y3【点睛】本题考查了不等式的性质,不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变. 即若,则,;性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.,即;性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变, 即4、x2;数轴表示见解析【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可【详解】解:,移项,得,合并同类项,得,系数化为1,得x2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)80,解得x10-2<0,当x=10时,y最大=40万元故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题